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ABSTRACT: In this paper, high order bending theories are used to develop an analytical model considering 

shear strains in displacement fields which have not been taken into account by other theories for functionally 

graded material (FGM) clamped symmetric beams under bending. A new polynomial shear function developed 

which represents the originality of this research work satisfies the boundary conditions and stress nullities on the 

lower and upper faces of the section through the thickness. These theories do not require a shear correction 

factor and consider a hyperbolic shape function. Material properties are assumed to vary in the thickness 

direction, a simple power-law distribution in terms of volume fractions of constituents is considered. An 

illustrative case is studied in this investigation, a clamped FGM beam subjected to a concentrated shear force at 

the middle, is presented the originality of this research work. The mathematical model is established by 

differential equations which are derived by the principle of virtual work. Equilibrium equations and boundary 

conditions are introduced. The solution model is based on a variation approach (integrals) to predict the field 

component of displacements and the basic constitutive laws. The solution of the analytical model is presented. 

The results in terms of displacement fields including rotation of the section, deformations, and stresses, 

predicted from the proposed model and compared to those of simply supported end beams found in the 

literature, are presented. 

 

KEYWORDS: High order theories and bending, Mathematical model, Clamped Beams, New polynomial shear 

function, Displacement fields. 

 

I. Introduction 

Composite materials are widely used in 

industries because of their excellent properties of 

materials which result mainly from the best 

interaction between fibers and matrix and also the 

best properties of the constituents. In the research 

works of Shi (Shi et al., 2000) studied the shear 

deformations of beams with sixth-order differential 

equations at different boundary conditions the main 

objective is to present a new theory to analytically 

solve the sixth-order differential equilibrium 

equations of three typical shear deformable beams 

since the fourth-order theory of the Timoshenko 

beam theory (TBT) might generate some problems 

on the displacement boundary conditions. The 

solutions are more accurate than those given by the 

fourth-order differential equations of TBT, and 

agree well with the elasticity solutions. Lu (Lu et 

al., 2015) investigated the transverse shear 

deformation effects on the deflection of composite 

beams with various laminate configurations and 

boundary conditions. The main result obtained 

proves that the total deformation increases with 

increasing fiber orientation. The classical Euler-

Bernoulli beam theory does not consider transverse 

shear, as opposed to TBT and higher order FGM 

beam theories which include shear strains and 

introduce a shape function. Many research works 

were carried out to develop mathematical models 

able to predict the static and dynamic response of 

thin and thick beams. Sankar (Sankar., 2000) 

proposed elasticity solution obtained for the simply 

supported functionally graded (FG) beams 

subjected to sinusoidal transverse load. The Euler–



 
 

 

International Journal of Modern Research in Engineering and Technology (IJMRET) 

www.ijmret.org Volume 9 Issue 8 ǁ August 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w w w . i j m r e t . o r g      I S S N :  2 4 5 6 - 5 6 2 8  

 

 

Page 35 

Bernoulli beam type was also developed 

considering that the plane cross-sections remain 

plane after deformations, and the stresses and 

displacements depend on a non-dimensional 

parameter. Authors found that the FG beam theory 

is valid for long and slender beams with a slowly 

varying transverse load. Guenfoud (Guenfoud et 

al., 2016)proposed a new polynomial shear 

function which satisfies the stress-free boundary 

conditions. However, this theory has strong 

similarities with Timoshenko beam theory in some 

concepts such as equations of movement, boundary 

conditions and stress resultant expressions. 

Alshorbagy (Alshorbagy et al., 2007) studied free 

vibration characteristics and dynamic behavior of 

functionally graded beam using the finite element 

method for different boundary conditions. 

Significant conclusions were cited as the natural 

frequencies increase with an increase in power 

exponent (when E ratio< 1), and decrease with an 

increase in power exponent (when E ratio> 1). 

Zhong ( Zhong et al., 2007) proposed 

elasticity analytical solutions for functionally 

graded cantilever beams under different load types. 

Gao et al. (2007) were focused on the boundary 

conditions in the beam bending problem using the 

reciprocity theorem and the Papkovich-Neuber’s 

solution to obtain the appropriate stress and the 

accurate mixed boundary conditions. A set of 

necessary conditions on the edge-data for the 

existence of a rapidly decaying solution, was 

established generalizing the method proposed by 

Gregory and Wan .Research works of Thai et al., 

Wei et al., Zaoui et al., and Ziou et al.(2012; 2017) 

carried out on the bending and free vibration of 

functionally graded material (FGM) beams. 

Theories of higher-order were used taking into 

account the transverse shear strain through the 

depth of the beam. The Analytical solutions were 

obtained for a simply supported beam. Authors 

concluded that an increase in the power law index 

results a decrease in the stiffness of FGM beam, 

and leads to an increase in the deflections and a 

reduction of the natural frequencies. The presence 

of cracks seems to reduce the frequencies and 

changes the vibration mode shapes of FGM beams, 

the shear deformation should be considered in the 

case that the slenderness ratio is less than some 

range (L/h≤10). The deflections of short beams are 

higher than those of slender beams. The shear 

deformation effects are more evident for higher-

mode frequencies than for lower-mode frequencies. 

Benatta (Benatta et al., 2021; 2018) studied the 

response of the bending of short hybrid composite 

beams varying fibers spacing. The authors proved 

that the hybrid FGM with a fiber volume fraction 

variation, can improve the beam design. Also, they 

carried out a static analysis of short FGM beams 

with simply supported ends including warping and 

shear deformations effects. The results obtained 

showed that the proposed formulation permits, for 

warping of the cross-section of the FGM beam, to 

eliminate the necessity to use the arbitrary shear 

correction coefficients. Mahi (Mahi et al., 2021) 

investigated the free vibration of FGM beams 

subjected to thermal stresses with general boundary 

conditions. The results showed the influences of 

temperature, constituent material distribution, and 

beam aspect ratio on the natural frequencies of the 

beam. Ghugal (Ghugal et al., 2021) proposed 

elasticity analytical solutions for the static flexure 

analysis of thick isotropic beams subjected to 

concentrate load and/or uniform distribution load 

with various end conditions and compared the 

displacement field of illustrative cases to those of 

Timoshenko and solutions in literature. 

However, these previous research works as 

seen in this literature review did not investigate 

sufficiently the FGM beams with clamped ends 

taken into account the shear deformations in the 

displacement fields. Then, the objective of this 

paper is to propose an analytical model takinginto 

account the shear strain in the field of 

displacements for FGM clamped symmetric beams 

under three-point bending, such as illustrative case. 

Briefly, the manuscript is organized by description 

of material properties as well as the proposed 

mathematical model based on high-order bending 

theories to determine the governing differential 

equations which are derived by the virtual work 

principle and solved by integrals. Then, a 

numerical comparison and discussion of results, in 

terms of displacement fields, stresses, and 

deformations, predicted from the proposed model 

for beams with clamped ends and those available in 

the literature, are presented. This proposed 

analytical model using a new polynomial shear 

function is a new contribution.  

 

II. Material and cross section 

properties 

2.1 Material properties 
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The stiffness coefficients E(z) and G(z) 

obtained based on the mixing rule of constituents, 

can be written as follows: 

 

𝐸 𝑧 = 𝐸𝐹𝑉𝐹 𝑧 + 𝐸𝑀(1− 𝑉𝐹 𝑧 )   

    (1) 
1

𝐺(𝑧)
=

𝑽𝑭 𝒛 

𝐺𝐹
+

𝟏−𝑉𝐹 𝑧 

𝐺𝑀
    

     (2) 

Where VF: Fiber volume fraction; EF: Young 

modulus of fiber; EM: Young modulus of matrix; 

GF: Fiber shear modulus; GM: Matrix shear 

modulus. 

Equation (3) which presents a simple power law 

with index n on the z-axis and the height of the 

section, following the constituent mixing rule, can 

be written as: 

 

𝑉𝐹 𝑧 = 𝑉2 +  𝑉1 − 𝑉2 (2
𝑧

ℎ
)𝑛                                                        

(3) 

The fiber volume fraction VF varies through the 

thickness, with values V1=VF(h/2) and V2=VF (0). 

2.2Cross section properties 

Equation (4) illustrates the stiffness 

coefficients of beam A11, B11 and D11 which are 

extension, bending-extension coupling, and 

bending stiffness coefficients, respectively; its 

expression under integrals between the half–heights 

of the section is given by: 

{𝐴11 , 𝐵11 , 𝐷11 } = 𝑏  𝐸(𝑧){1, 𝑧, 𝑧2}𝑑𝑧
𝑧=

ℎ
2

𝑧=
−ℎ
2

                                      

(4) 

Although, Ba
11, Da

11, Fa
11 which represent the 

additional coupling coefficients and the bending 

stiffness depending on the shape function φ(z), are 

presented under the following integrals: 

 

{𝐵𝑎
11 ,𝐷𝑎

11 , 𝐹𝑎
11} =

𝑏  𝐸 𝑧  𝜑 𝑧 {1, 𝑧, 𝜑(𝑧)}
𝑧=

ℎ
2

𝑧=
−ℎ

2

𝑑𝑧                 (5)              

Also, the coefficient of the additional transverse 

shear stiffness is:  

 

𝐴𝑎 55 = 𝑏  𝐺 𝑧 
𝑧=

ℎ
2

𝑧=
−ℎ

2

(
𝜕𝜑(𝑧)

𝜕𝑧
)2𝑑𝑧                                                      

(6) 

 

III. Mathematical Model 

3.1 Displacements fields 

The displacement components are defined 

from the equations (7) to (11) along the x and z- 

directions of the beam, when the rotation of the 

section θ(x) is measured on the mean line: 

 

𝑢 𝑥, 𝑧 = 𝑢0 𝑥 − 𝑧
𝜕𝑤(𝑥)

𝜕𝑥
+ 𝜑 𝑧 [

𝜕𝑤 𝑥 

𝜕𝑥
+ 𝜃 𝑥 ]                          

(7) 

V 𝑥, 𝑧 = 0                                                                                      

(8) 

𝑤 𝑥, 𝑧 = 𝑤0 (𝑥)                                                                              

(9) 

Deformations and stresses equations (10) to (13) 

which present the Green Lagrange linear strain 

tensor are cited as follows: 

𝑥 𝑥, 𝑧 =
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2 + 𝜑 𝑧 
𝜕𝑥𝑧  𝑥 

𝜕𝑥
                                            

(10)           

 


xz
 𝑥 =

∂𝜑 𝑧 

∂z
0

xz
 𝑥                                                                     

(11) 

 

While, the normal stress and the shear stress of 

Hooke’s basic constitutive law are presented as 

follows: 

𝜎𝑥𝑥  𝑥 = 𝐸(𝑧)𝑥                                                                            

(12) 

𝑥𝑧  𝑥 = 𝐺(𝑧)
𝑥𝑧

                                                                          

(13) 

 

3.2New polynomial shear function 

A new polynomial shear function is adopted 

in the present study cited as below:  

𝜑 𝑧 = 𝑧  
ℎ2

12
−

13

 9
 − 𝑧3(

1

9
−

52

27ℎ2)                                            

(14) 

 

The new polynomial shear function proposed is 

compared to the parabolic shear deformation beam 

theories (PSDBT)suggested by Reddy [17]and 

cited with other functions in reference [1].The 

higher-order theories also including cross-sectional 

warping (shear deformation effect) added to 

displacement fields with nonlinear shape functions 
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cited in equation (14) and Reddy equation (12-a), 

respectively. 

𝜑 𝑧 = 𝑧(1 −
4z2

3ℎ2
)                                               (14

− a) 

From equation 14, the new polynomial shear 

function as derived is given in equation (14-b) as 

follows: 

∂𝜑 𝑧 

∂z
=  

ℎ2

12
−

13

 9
 − z2(

1

3
−

52

9ℎ2
)                  (14

− b) 

At both, top and bottom fiber when z=±h/2, for the 

first derived of polynomial shear function, the 

nullity of the shear stress at theses fibers can be 

confirmed. The equation (14-c) is the second 

derived for z=0 in which the shear stress is 

maximal at the midline fiber, when φ (z=0) =0. 

∂2𝜑 𝑧 

∂𝑧2
= −z(

2

3
−

104

9ℎ2
)                                          (14

− c) 

Figure 1 shows the comparison between the new 

shear function and the Reddy’s shear function.  The 

Reddy’ PSDBT function is suggested for real 

solution (∆= 0). Also, it can be seen that the both 

shear functions are in good agreement for z=±h/2. 

 

Figure 1 . Comparison between the new shear function and Reddy’s shear function (Ref17) 

 

IV. Displacements and Strains 

4.1 Equilibrium equations 

Consider the geometric dimensions of the beam at 

the boundary restrains, as shown in figure 2, having 

a width (b), span length (L), thickness (h), under 

force (FZ). Figure 2 presents the applied loads and 

the symmetry section of the beam. 

 

Figure 2. Geometry of beams 

The virtual work principle applied in brief 

on the beam is defined as follows: 
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𝒃  (
𝒙
𝒙 + 𝒙𝒛𝜸𝒙𝒛

𝒛=
𝒉

𝟐

𝒛=
−𝒉

𝟐

𝒙=𝑳

𝒙=𝟎

)𝒅𝒙𝒅𝒛

− 𝒒𝒘𝒅𝒙
𝒙=𝑳

𝒙=𝟎

= 𝟎               (𝟏𝟓) 

𝑏 (𝑁
𝑥=𝐿

𝑥=0

𝜕𝑢0

 𝜕𝑥
− 𝑀𝑏

𝜕2𝑤0

 𝜕𝑥2
+ 𝑀𝑠

𝜕𝜓𝑥

 𝜕𝑥

+ 𝑄𝜓𝑥)𝑑𝑥

− 𝑏 𝑞𝑤0𝑑𝑥
𝑥=𝐿

𝑥=0

= 0       (15 − 𝑎) 

 

Equations (15-b) and (15-c) present the normal 

resultant force (N) and the shear resultant force 

(Q), respectively. 

𝑁 =  x𝑑𝑧
ℎ

2
−ℎ

2

                                                                           

(15-b) 

𝑄 =  
𝜕𝜑  𝑧 

∂𝑧

𝑧𝑥
𝑑𝑧

ℎ

2
−ℎ

2

                                                                   

(15-c) 

The bending moment (Mb) and the shear bending 

moment (Ms), equations (15-d) and (15-e), 

respectively, are given by: 

Mb =  zx𝑑𝑧
ℎ

2
−ℎ

2

                                                                        

(15-d) 

Ms =  𝜑 𝑧 
x
𝑑𝑧

ℎ

2
−ℎ

2

                                                                  

(15-e) 

Equilibrium equations (16) to (19) are derived by 

deductions from the integrals: 

∂N x 

 ∂x
= 0                                                                                      

(16) 

𝜕2 M 𝑥 +M1 x  

∂𝑥2 −
𝜕N x 

∂𝑥
+ q = 0                                                   

(17)  
𝜕 M 𝑥 +M1 x  

∂𝑥
− N1 x = 0                                                         

(18) 

For virtual displacement equal to zero (δw (0) =0), 

where the concentrate load is applied: 

𝜕 M 𝑥 +M1 x  

∂𝑥
− N1 x + F𝑧 = 0                                                

(19) 

 

The differential equations (20) to (23) are obtained 

under the following forms: 
𝜕

∂𝑥
[ 𝐷11 − 𝐷𝑎

11
 
∂3w 𝑥 

∂𝑥3 −

 𝐷𝑎
11 − 𝐹𝑎

11 
𝜕20

xz
 𝑥 

∂𝑥2 = 0           (20) 

−𝐷𝑎
11

∂3w 𝑥 

∂𝑥3 − 𝐹𝑎
11

𝜕20
xz
 𝑥 

∂𝑥2 = 𝐴𝑎 55
0

xz
                               

(21) 

With the integration of equation (20), a linear 

equation system is obtained: 

𝐷11
∂3w 𝑥 

∂𝑥3 + 𝐷𝑎
11

𝜕20
xz
 𝑥 

∂𝑥2 = 𝑟1                                                 

(22)                     

−𝐷𝑎
11

∂3w 𝑥 

∂𝑥3 − 𝐹𝑎
11

𝜕20
xz
 𝑥 

∂𝑥2 = 𝐴𝑎 55
0

xz
                               

(23) 

 

4.2 Boundary conditions 

Application of essential boundary conditions 

(Neumann) and natural (Dirichlet) for 

displacement and forces with a symmetry 

consideration: 

 

- Case: Boundary conditions of clamped 

beam with concentrated load (P) at the 

middle 
𝜕𝑤 (𝑥=𝐿)

 𝜕𝑥
= 𝑤 𝑥 = 0 = 𝜃 𝑥 = 0 = 0                                        

(24) 

 

4.3 Illustrative case 

Equations (25), (26), (27) present displacements 

and deformations. Along the z-axis and the mean 

line of the beam for the interval (0≤ x ≤ L/2), we 

can write the following equation:  

𝜐 x = −𝜐 x = 𝑥(4𝑥2 − 3L𝑥)                                                              

(25) 
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Figure 3. Clamped beam with concentrate load Fz 

at the middle 

 

When the shear phenomenon is taken into account, 

the dimensionless coefficient is as follows: 

𝑆 =
48

𝐿2

𝐷𝑎11
2

𝐴𝑎 55𝐷11
(26) 

The function φθ (z) which is derived from the 

solution can be defined by the following 

expression: 

𝜑 x = 𝑥 +
1

𝛺
  𝑐𝑜𝑠ℎ⁡(𝛺𝑥 −  𝑠𝑖𝑛ℎ⁡(𝛺𝑥) − 1)                                           

(27) 

Finally, the displacement components are as 

follows: 

𝑢 x, z = −z
Fz𝐿

2

192𝑏𝐷11
 
𝜕υ x 

∂𝑥
+ 2𝑆

𝜕𝜑 x 

∂𝑥
 +

φ z 
Fz

2b𝐷𝑎11
(
𝐿2

48
𝑆

𝜕𝜑 x 

∂𝑥
)             (28)        

 

𝑉 x, z = 0                                                                                                         

(29) 

𝑤 x =
Fz𝐿

2

192𝑏𝐷11
[𝜐 x + 2𝑆𝜑 x ]                                                                    

(30) 

However, the deformation components along x and 

z-directions of the beam are given as follows: 

𝜀 x, z = −z
Fz𝐿

2

192𝑏𝐷11
 
𝜕2υ x 

∂𝑥2 + 2𝑆
𝜕2𝜑 x 

∂𝑥2
 +

φ z 
Fz

2b𝐷𝑎11
(
𝐿2

48
 𝑆

𝜕2𝜑 x 

∂𝑥2 )               (31) 

Furthermore, the transverse shear deformation is 

written as:  

0
xz
 𝑥, 𝑧 =

𝜕𝜑  𝑧 

∂𝑧

Fz𝐿
2

96b𝐷𝑎 11
𝑆

𝜕𝜑 x 

∂𝑥
                                                                      

(32) 

 

Let us defined the newly proposed shear coefficient 

S: 

S =
𝐸𝑥

𝐺𝑥𝑧
 
ℎ

𝐿
 

2

=
bh

I
∗
𝐹∗55

𝐷∗11
 
ℎ

𝐿
 

2

                                                                                    

(33) 

Where, 𝐹∗
55 =

1

ℎ𝐺𝑥𝑧
 ;  𝐷∗

11 =
b

𝐸𝑥 𝐼
   are the shear 

stiffness constant and the bending stiffness constant 

of the beam, respectively.   

 

The transverse expression of the displacement (30) 

can re-write (see appendix-2) and present by the 

following equation: 

 

w0 x =
P𝐿2𝑥

16𝐸𝑥 𝐼
[1 −

1

6

𝑥2

𝐿2 +
16

24
S]                                                                         

(34) 

At(x=L/2) for (eq.34), the maximum value is 

evaluated as follows: 

w𝐶  x =
L

2
 =

P𝐿3

192𝐸𝑥 𝐼
[

23

24
+ 4

𝐸𝑥

𝐺𝑥𝑧
 
ℎ

𝐿
 

2

]                                                            

(34-a) 

 

V. Discussion of Numerical 

Results 

The results obtained in this study are compared to 

those of simply supported beams cited in the 

literature [Benatta et al-2008] for the FGM beam 

using the following numerical characteristics: 

L=20mm; b=30mm; h=4mm; FZ =5kn; Ef=138GPa; 

Em=3.5GPa; GF=12GPa; Gm=1.6GPa; and fraction 

volume with V1=0.6 and V2=0.4.   

In figure 4, the comparison of the results illustrated 

in terms of displacements predicted from the 

proposed  analytical model and those obtained from 

the literature model, can show that there is a 

significant decrease by a quarter, when the beam 

boundary conditions are changed from the simply 

supported ends to clamped edges through the z-axis. 
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Figure 4. Comparisonof𝑧-axis displacement(𝑤) betweenclamped beam and simply supported beam 

 

From figure 5, it can be observed that the x-axis displacement curves through the thickness exhibit a cubic 

distribution for higher-order theories (PDSBT) used. However, for classical Euler-Bernoulli and Timoshenko 

theories used, the displacement curves show a linear distribution. 

 
 

Figure 5. Comparison of longitudinal displacement (𝑢) betweenclamped beam ends and simply supported beams 

theories 

 

In figure 6, the comparison shows a linear stress 

increase for Timoshenko's theory used with a 

correction coefficient (k=5/6). Nevertheless, a 

cubic distribution of stress is observed for higher-

order theories (PDSBT) used. 
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Figure 6 . Comparison of variation longitudinal stress (𝜎𝑥)betweenclamped ends beam and simply supported 

beams theories 

 

In figure 7, the comparison shows a cubic 

distribution of the transverse shear stresses using 

higher-order theories (PDSBT). However, the shear 

stress distribution through the beam thickness is 

constant using the Timoshenko theory.  

 

 
Figure 7 . Comparison of transverse shear stress (𝝉𝐱𝐳) between clamped beam ends and simply supported beams 

theories 

 

 

 

Considering  illustrative  example  of  the clamped  

steel  beam  subjected  to  concentrate load Fz 

(figure3), from Equation (35) proposed by Ghugal 

and  Sharma  (2011), the  maximum  transverse  

displacement for the  flexure  of  thick beams is 

given by the following expression: 

w𝑐2  x =
L

2
 =

P𝐿3

192𝐸𝑥 𝐼
[1 + 9.6(1 + µ)  

ℎ

𝐿
 

2

]                                      

(35) 

Where, µ is the Poisson’s ratio of the beam 

material. 
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The properties of the steel beam (IPE 330) 

considered are as follows: 

Cross-section  bxh(160x330 mm2); Length  L  =  10  

m; Load Fz= 5  kN(including  the  self-weight  of  

the  beam  and  the pedestrian load); Moment of 

inertia  I=11770 cm4; Poisson’s  ratio  µ=0.3; 

Elasticity modulus Ex=210GPa, for type of steel 

beam: S275. The displacement value at mid- 

Span obtained from equation (35) (wc2=0,1067mm) 

is similar to that predicted from the proposed model 

(Eq. 34-a) (wc2=0,1021mm). It can be observed that 

the difference between both values less than 

5%.This implies the validity of the proposed 

model.  
 

VI. Conclusions 

A new analytical model is proposed taking 

into account shear strains in displacement fields for 

FGM beams with clamped ends under bending. The 

results in terms of displacement fields including 

shear strains and section rotation, strains and 

stresses, are presented. Higher-order shear strains 

new theories are used which include shape 

functions and stress nullities at the bottom and top 

faces of the section through the beam thickness. 

These theories do not require a shear correction 

coefficient contrary to the Timoshenko’s beam 

theory, and also to Euler-Bernoulli classical beam 

theories (CBT). A fruitful numerical comparison is 

carried out to compare results predicted from the 

proposed model for clamped ends beam with those 

obtained from the literature for simply supported 

beams, in terms of displacements, deformations, 

axial and shear stresses.    The present 

mathematical model could be used by designers in 

composite materials field to more understand the 

flexural behavior of FGM beams. In fact, the 

results obtained in this study allow draw the 

following conclusions: 

(1)  The proposed high order model taking into 

account the shear strain in displacement 

fields for flexural FGM clamped ends beams 

exhibits more precise results (nonlinear 

behavior) with respect to those predicted 

from Timoshenko beam theory (linear 

behavior) in which shear strain effect is 

considered by a correction coefficient and 

also Euler-Bernoulli classical beam theory 

(CBT)which neglects shear strains in 

displacement fields. 

(2)  The results in terms of displacements 

predicted from the proposed analytical 

model and the literature model, show that 

there is a remarkable decrease by a quarter 

when the boundary conditions of the beam 

is changed from simply supported ends to 

clamped ends. 

(3) The proposed mathematical model 

considering the shear strain in displacement 

fields is efficient to predict the solution for 

FGM beams with clamped ends under three-

point bending. 

(4) The new polynomial shear function exhibits 

a good convergence with those of the other 

higher order shear deformation beam 

theories. 

For future works, it is recommended to analyze the 

proposed model for other materials of beams and 

shells not used in this study. 

 

Appendix-1: Case 

N1(x) and M1(x) are the resultant force, and the 

resultant moment, respectively, depending on the 

additional shape function, and are defined by the 

following equations: 

N1 x =  
𝜕𝜑 𝑧 

∂𝑧
xz  𝑑𝑆 = 𝑏[𝐴∗55

0
xz
 𝑥 ] 

M1 x =  𝜑 𝑧 x  𝑑𝑆

= 𝑏[𝐵𝑎
11

𝜕u0 𝑥 

∂𝑥
− 𝐷𝑎

11

𝜕2w

∂𝑥2

+ 𝐹𝑎
11

𝜕0
xz
 𝑥 

∂𝑥
] 

 

𝜕φ
θ
 𝑥 

∂𝑥
= sinh Ωθx − cosh Ωθx − 1 

𝑢 x, z = −z
Fz

2𝐷11

[−
𝑥2

4
+

L

8
𝑥

+
48

𝐿2

𝐷𝑎
11

2

𝐴𝑎 55𝐷11

    1 − cosh⁡(𝛺x 

+ sinh⁡(𝛺x) −
sinh⁡(𝛺x)

sinh⁡(𝛺
L

2
)
]

+ φ(z)
Fz

2b

𝐷𝑎
11

𝐴𝑎 55𝐷11

 1

− cosh⁡(𝛺x + sinh⁡(𝛺x)

−
sinh⁡(𝛺x)

sinh⁡(𝛺
L

2
)
) 

𝑤 x =
Fz

𝐷11

[   −
1

12
𝑥3 +

𝐿

16
𝑥2 +   

48
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𝐷𝑎
11

2

𝐴𝑎 55𝐷11

 [𝑥

+
1

𝛺

 cosh⁡(𝛺𝑥 − sinh⁡(𝛺𝑥)
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θ 𝑥 =
Fz

2

𝐷𝑎
11

𝐴𝑎 55𝐷11

 −
𝐴𝑎 55

4𝐷𝑎
11

𝑥2 +
𝐿𝐴𝑎 55

8𝐷𝑎
11

𝑥

+
48

𝐿2

𝐷𝑎
11

𝐷11

[1 − cosh⁡(𝛺𝑥)

+ sinh⁡(𝛺𝑥)]  

 

 

Appendix-2: Case 

 

It can be noted that only a pure flexure is reported. 

 

For cut 0≤ x≤ L/2, the moment of bending is as the 

following: 

𝑀 𝑥 =
P

2
𝑥 −

P

8
L                                                                                  

(1) 

Integrate the previous equation and deduce the 

expression for φx: 

𝐸𝑥𝐼φ𝑥
=

P

4
𝑥2 −

PL

8
 𝑥 + c1                                                                    

(2) 

The symmetry of the deformation requires: 

φ
𝑥

(
L

2
) = 0                                                                                             

(3) 

Equation (2) can be written: 

𝐸𝑥𝐼φ𝑥
=

P

4
𝑥2 −

P

8
L 𝑥      (4) ;     φ

𝑥
=

P𝐿2

16𝐸𝑥 𝐼
(1 −

1

2

𝑥2

𝐿2 )                     (4.a) 

The first derivation of the displacement expression 

can be taken as the following: 

 
∂w0

∂𝑥
= −(φ

𝑥
+

P

2𝑏ℎ𝐺𝑥𝑧
)        (5)      ⇒   

∂w0

∂𝑥
(

L

2
) =

−
P

2𝑏ℎ𝐺𝑥𝑧
                     (5-a) 

The final integrate expression is: 

w0 x = − 
P𝐿2

16𝐸𝑥 𝐼
(1 −

1

2

𝑥2

𝐿2 +
P

2𝑏ℎ𝐺𝑥𝑧
)d𝑥 

L

2
0

                                              

(6) 

The final displacement is reported in the expression 

(eq.34) 

The final maximum displacement is reported into 

(eq.34-a) at the mid-span. 
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