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ABSTRACT: In this paper, high order bending theories are used to develop an analytical model considering
shear strains in displacement fields which have not been taken into account by other theories for functionally
graded material (FGM) clamped symmetric beams under bending. A new polynomial shear function developed
which represents the originality of this research work satisfies the boundary conditions and stress nullities on the
lower and upper faces of the section through the thickness. These theories do not require a shear correction
factor and consider a hyperbolic shape function. Material properties are assumed to vary in the thickness
direction, a simple power-law distribution in terms of volume fractions of constituents is considered. An
illustrative case is studied in this investigation, a clamped FGM beam subjected to a concentrated shear force at
the middle, is presented the originality of this research work. The mathematical model is established by
differential equations which are derived by the principle of virtual work. Equilibrium equations and boundary
conditions are introduced. The solution model is based on a variation approach (integrals) to predict the field
component of displacements and the basic constitutive laws. The solution of the analytical model is presented.
The results in terms of displacement fields including rotation of the section, deformations, and stresses,
predicted from the proposed model and compared to those of simply supported end beams found in the
literature, are presented.

KEYWORDS: High order theories and bending, Mathematical model, Clamped Beams, New polynomial shear
function, Displacement fields.

I Introduction agree well with the elasticity solutions. Lu (Lu et
Composite materials are widely used in al., 2015) investigated the transverse shear

industries because of their excellent properties of
materials which result mainly from the best
interaction between fibers and matrix and also the
best properties of the constituents. In the research
works of Shi (Shi et al., 2000) studied the shear
deformations of beams with sixth-order differential
equations at different boundary conditions the main
objective is to present a new theory to analytically
solve the sixth-order differential equilibrium
equations of three typical shear deformable beams
since the fourth-order theory of the Timoshenko
beam theory (TBT) might generate some problems
on the displacement boundary conditions. The
solutions are more accurate than those given by the
fourth-order differential equations of TBT, and
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deformation effects on the deflection of composite
beams with various laminate configurations and
boundary conditions. The main result obtained
proves that the total deformation increases with
increasing fiber orientation. The classical Euler-
Bernoulli beam theory does not consider transverse
shear, as opposed to TBT and higher order FGM
beam theories which include shear strains and
introduce a shape function. Many research works
were carried out to develop mathematical models
able to predict the static and dynamic response of
thin and thick beams. Sankar (Sankar., 2000)
proposed elasticity solution obtained for the simply
supported functionally graded (FG) beams
subjected to sinusoidal transverse load. The Euler—
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Bernoulli beam type was also developed
considering that the plane cross-sections remain
plane after deformations, and the stresses and
displacements depend on a non-dimensional
parameter. Authors found that the FG beam theory
is valid for long and slender beams with a slowly
varying transverse load. Guenfoud (Guenfoud et
al., 2016)proposed a new polynomial shear
function which satisfies the stress-free boundary
conditions. However, this theory has strong
similarities with Timoshenko beam theory in some
concepts such as equations of movement, boundary
conditions and stress resultant expressions.
Alshorbagy (Alshorbagy et al., 2007) studied free
vibration characteristics and dynamic behavior of
functionally graded beam using the finite element
method for different boundary conditions.
Significant conclusions were cited as the natural
frequencies increase with an increase in power
exponent (when E 4i,< 1), and decrease with an
increase in power exponent (when E o> 1).
Zhong ( Zhong et al., 2007) proposed
elasticity analytical solutions for functionally
graded cantilever beams under different load types.
Gao et al. (2007) were focused on the boundary
conditions in the beam bending problem using the
reciprocity theorem and the Papkovich-Neuber’s
solution to obtain the appropriate stress and the
accurate mixed boundary conditions. A set of
necessary conditions on the edge-data for the
existence of a rapidly decaying solution, was
established generalizing the method proposed by
Gregory and Wan .Research works of Thai et al.,
Wei et al., Zaoui et al., and Ziou et al.(2012; 2017)
carried out on the bending and free vibration of
functionally graded material (FGM) beams.
Theories of higher-order were used taking into
account the transverse shear strain through the
depth of the beam. The Analytical solutions were
obtained for a simply supported beam. Authors
concluded that an increase in the power law index
results a decrease in the stiffness of FGM beam,
and leads to an increase in the deflections and a
reduction of the natural frequencies. The presence
of cracks seems to reduce the frequencies and
changes the vibration mode shapes of FGM beams,
the shear deformation should be considered in the
case that the slenderness ratio is less than some
range (L/h<10). The deflections of short beams are
higher than those of slender beams. The shear
deformation effects are more evident for higher-
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mode frequencies than for lower-mode frequencies.
Benatta (Benatta et al., 2021; 2018) studied the
response of the bending of short hybrid composite
beams varying fibers spacing. The authors proved
that the hybrid FGM with a fiber volume fraction
variation, can improve the beam design. Also, they
carried out a static analysis of short FGM beams
with simply supported ends including warping and
shear deformations effects. The results obtained
showed that the proposed formulation permits, for
warping of the cross-section of the FGM beam, to
eliminate the necessity to use the arbitrary shear
correction coefficients. Mahi (Mahi et al., 2021)
investigated the free vibration of FGM beams
subjected to thermal stresses with general boundary
conditions. The results showed the influences of
temperature, constituent material distribution, and
beam aspect ratio on the natural frequencies of the
beam. Ghugal (Ghugal et al., 2021) proposed
elasticity analytical solutions for the static flexure
analysis of thick isotropic beams subjected to
concentrate load and/or uniform distribution load
with various end conditions and compared the
displacement field of illustrative cases to those of
Timoshenko and solutions in literature.

However, these previous research works as
seen in this literature review did not investigate
sufficiently the FGM beams with clamped ends
taken into account the shear deformations in the
displacement fields. Then, the objective of this
paper is to propose an analytical model takinginto
account the shear strain in the field of
displacements for FGM clamped symmetric beams
under three-point bending, such as illustrative case.
Briefly, the manuscript is organized by description
of material properties as well as the proposed
mathematical model based on high-order bending
theories to determine the governing differential
equations which are derived by the virtual work
principle and solved by integrals. Then, a
numerical comparison and discussion of results, in
terms of displacement fields, stresses, and
deformations, predicted from the proposed model
for beams with clamped ends and those available in
the literature, are presented. This proposed
analytical model using a new polynomial shear
function is a new contribution.

1. Material and cross section

properties
2.1 Material properties
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The stiffness coefficients E(z) and G(z)
obtained based on the mixing rule of constituents,
can be written as follows:

E(z) = ErVr(2) + Ey (1 —Vp(2))

1)
1 _Vi@ | 1Vr(@)
G(2) Gp Gy

)

Where Ve: Fiber volume fraction; Er: Young
modulus of fiber; Ey: Young modulus of matrix;
Gg: Fiber shear modulus; Gy: Matrix shear
modulus.
Equation (3) which presents a simple power law
with index n on the z-axis and the height of the
section, following the constituent mixing rule, can
be written as:

Ve(2) =V + (, =)@ D"
3)

The fiber volume fraction VE varies through the
thickness, with values V;=V¢(h/2) and V,=V (0).

2.2Cross section properties

Equation (4) illustrates the stiffness
coefficients of beam Aj;, By; and Dy which are
extension,  bending-extension  coupling, and
bending stiffness coefficients, respectively; its
expression under integrals between the half-heights
of the section is given by:

2
{A11,B11,D11} =D fzz—z_/: E(2){1, z,zz}dz
2
4)

Although, B%;, D%, F4 which represent the
additional coupling coefficients and the bending
stiffness depending on the shape function ¢(z), are
presented under the following integrals:

{Bau/;Dau:Fau} =
b[ % E@ @)1z ¢(2)}dz (5)

Also, the coefficient of the additional transverse
shear stiffness is:

0@ =2(5-2)-2G- 2
(14

The new polynomial shear function proposed is
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2
Ass =b [ % G(z) (52
2
6)

1. Mathematical Model
3.1 Displacements fields
The displacement components are defined
from the equations (7) to (11) along the x and z-
directions of the beam, when the rotation of the
section 0(x) is measured on the mean line:

ur,2) = up®@) - 2222 4 ()22 4 ()]
(7

V(x,z) =0

(8)

w(x, z) = wy(x)

)

Deformations and stresses equations (10) to (13)
which present the Green Lagrange linear strain
tensor are cited as fO||OWS'

anz (x)
7+ 9(2) ==

& (x,2) =——Z
(10)

00 (z
7, (00 =220 ()
(11)

While, the normal stress and the shear stress of
Hooke’s basic constitutive law are presented as
follows:
O-XX (‘x) = E(Z)gx
12)
7. (x) = G(2)y,

(13)

3.2New polynomial shear function

A new polynomial shear function is adopted
in the present study cited as below:

compared to the parabolic shear deformation beam
theories (PSDBT)suggested by Reddy [17]and
cited with other functions in reference [1]. The
higher-order theories also including cross-sectional
warping (shear deformation effect) added to
displacement fields with nonlinear shape functions
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cited in equation (14) and Reddy equation (12-a),
respectively.

2

4z
o) =z(1- e (14

—a)

From equation 14, the new polynomial shear
function as derived is given in equation (14-b) as
follows:

a<p(z)_(h2 13)_ , 1 52

12 9
—b)

Z (§_W (14

0z

At both, top and bottom fiber when z=xh/2, for the
first derived of polynomial shear function, the

nullity of the shear stress at theses fibers can be
confirmed. The equation (14-c) is the second
derived for z=0 in which the shear stress is
maximal at the midline fiber, when ¢ (z=0) =0.

%¢(2) 2 104
oz - G (14

Figure 1 shows the comparison between the new
shear function and the Reddy’s shear function. The
Reddy’ PSDBT function is suggested for real
solution (A= 0). Also, it can be seen that the both
shear functions are in good agreement for z=xh/2.

4
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Figure 1 . Comparison between the new shear function and Reddy’s shear function (Refl7)

V. Displacements and Strains
4.1 Equilibrium equations
Consider the geometric dimensions of the beam at

the boundary restrains, as shown in figure 2, having

a width (b), span length (L), thickness (h), under
force (F2). Figure 2 presents the applied loads and
the symmetry section of the beam.
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L

Figure 2. Geometry of beams

The virtual work principle applied in brief
on the beam is defined as follows:
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h
x=L rz=3
b f f (0,06 + Ty 0¥ ) dxdz
x=0 Yz=—
’ =L
- f qowdx =0 (15)
x=0
*=L 96u, 92 6w, o,
N -M M
bfxzo( ox b gxz T My
+ Qo )dx
x=L
—bf qowydx
x=0
=0 (@(5-a)

Equations (15-b) and (15-c) present the normal
resultant force (N) and the shear resultant force

(Q), respectively.
h

N = [%0,dz
2

(15-b)

Q= fz a(/’ (Z)
(15—c)

The bending moment (My) and the shear bending
moment (M), equations (15-d) and (15-¢),
respectively, are given by:

(15-¢)
Equilibrium equations (16) to (19) are derived by
deductions from the integrals:

IN(x)
ax
(16)

=0

- Case: Boundary conditions of clamped
beam with concentrated load (P) at the
middle
ow (x=L)

dx
(24)

=wlkx=0)=0x=0)=0

4.3 lllustrative case
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2(ME)+M1(x)  IN(x)

dx2 dx +q:0
17)
9 (M(x)+M1(x)
( an; 1X)_N1(X)=0
(18)

For virtual displacement equal to zero (dw (0) =0),
where the concentrate load is applied:

a(M(x)+M1(x))

ax —Nl(X)+FZ=0

(19)

The differential equations (20) to (23) are obtained
under the following forms:

a 33w(x)
_[(Dll - Dan) ax3
40, @)
(D® 11— F¢ 11) =0 (20)
33w (x) 20 ()
—D%y4 av:; _Fau ax2 —Aass“/oxZ
(21)

With the integration of equation (20), a linear
equation system is obtained:

33w (x) a2y0 ()
Dy = +tDn—5 5 =n
(22)
33w (x) 240 vz )
Dy - a11 a2 = A%s1°,
(23)

4.2 Boundary conditions

Application of essential boundary conditions
(Neumann) and natural (Dirichlet) for
displacement and forces with a symmetry
consideration:

Equations (25), (26), (27) present displacements
and deformations. Along the z-axis and the mean
line of the beam for the interval (0< x < L/2), we
can write the following equation:

v(x) = —v(x) = x(4x? — 3Lx)

(25)
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Figure 3. Clamped beam with concentrate load F,
at the middle

When the shear phenomenon is taken into account,
the dimensionless coefficient is as follows:

So= 2 7ap(26)

48 D¢ 11
12 A%g5Dy;

The function ¢q (z) which is derived from the
solution can be defined by the following
expression:

0,0 = x + Hig (coshifi2 ) — sinhifx) — 1)
@7)

Finally, the displacement components are as
follows:

2
u(x,z) = —z—t— (61)()() + 28 awa(x)) +

192bD1q
0(2) g G So™52) (28)
V(x,z) =0
(29)
W0 = o [0() + 2549,(0)]
(30)

However, the deformation components along x and
z-directions of the beam are given as follows:

_ F, L2 92v(x) 320 o(x)
e(x,2) = 219260y, ( +25y 9x2 )+
F, L2 azng(x)
0() 7o (s So™5) (31)

Furthermore, the transverse shear deformation is
written as:
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dp(z) F,L? 39 o(x)
dz 96bD%qy; "9 ax

V(6 2) =
(32)

Let us defined the newly proposed shear coefficient
S

S = E_x(z)z _bh F'ss (@)2
Gy \L 1 D*11 \L

(33)

1
Where, F*s5 = o

XZ X

N b
D*;; = — are the shear
Eyl

stiffness constant and the bending stiffness constant
of the beam, respectively.

The transverse expression of the displacement (30)
can re-write (see appendix-2) and present by the
following equation:

2
wo (%) = X1 — + 25

16,1 6 L2
(34

At(x=L/2) for (eq.34), the maximum value is
evaluated as follows:

L P13 23 Ee (h)\2
we(x=1%) = E+a=(2)]
2 192E,1 24 Gz \L

(34-a)

V. Discussion of Numerical
Results

The results obtained in this study are compared to
those of simply supported beams cited in the
literature [Benatta et al-2008] for the FGM beam
using the following numerical characteristics:
L=20mm; b=30mm; h=4mm; F, =5kn; E=138GPa;
E.=3.5GPa; Gr=12GPa; G,=1.6GPa; and fraction
volume with V;=0.6 and V,=0.4.

In figure 4, the comparison of the results illustrated
in terms of displacements predicted from the
proposed analytical model and those obtained from
the literature model, can show that there is a
significant decrease by a quarter, when the beam
boundary conditions are changed from the simply
supported ends to clamped edges through the z-axis.
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Figure 4. Comparisonofz-axis displacement(w) betweenclamped beam and simply supported beam

From figure 5, it can be observed that the x-axis displacement curves through the thickness exhibit a cubic
distribution for higher-order theories (PDSBT) used. However, for classical Euler-Bernoulli and Timoshenko
theories used, the displacement curves show a linear distribution.

3

N
1

[EEN
1

—#— BSSE Timoshenko (k=1)
—=— BSSE(PDSBT)
—a— BSSE (Euler-Bernoulli)

Thickness(mm)
o

1 —+— BCE Timoshenko(k=1)
-2 —&— BCE(PDSBT)
—O— BCE(Euler-Bernoulli)
-3 I
-0.03 -0.02  -0.01 0 0.01 0.02 0.03

Figure 5. Comparison of longitudinal displacement (u) betweenclamped beam ends and simply supported beams
theories

In figure 6, the comparison shows a linear stress cubic distribution of stress is observed for higher-

increase for Timoshenko's theory used with a order theories (PDSBT) used.
correction coefficient (k=5/6). Nevertheless, a
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Figure 6 . Comparison of variation longitudinal stress (o, )betweenclamped ends beam and simply supported
beams theories

In figure 7, the comparison shows a cubic stress distribution through the beam thickness is
distribution of the transverse shear stresses using constant using the Timoshenko theory.
higher-order theories (PDSBT). However, the shear

2.5 .
1.5 \é
1 )
£
0.5 S
0 <
=
-0.5
-1 [——Beam with simply
-1.5 supported ends
9 |—e—B ith cl d end
Transverse shear stress(10) 2 At with clamped ends

-15000 -10000 -5000 0

Figure 7 . Comparison of transverse shear stress (z,,) between clamped beam ends and simply supported beams
theories

Considering illustrative example of the clamped L\ _ pLd n\2
steel beam subjected to concentrate load F, Wez (X B 5) 192Ex] [1+9.6+1W (Z) ]
(figure3), from Equation (35) proposed by Ghugal (35)

and Sharma (2011), the maximum transverse
displacement for the flexure of thick beams is
given by the following expression:

Where, 1 is the Poisson’s ratio of the beam
material.
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The properties of the steel beam (IPE 330)

considered are as follows:

Cross-section bxh(160x330 mm?); Length L = 10

m; Load F,= 5 kN(including the self-weight of

the beam and the pedestrian load); Moment of

inertia  1=11770 cm* Poisson’s ratio p=0.3;

Elasticity modulus E,=210GPa, for type of steel

beam: S275. The displacement value at mid-

Span obtained from equation (35) (w,=0,1067mm)

is similar to that predicted from the proposed model

(Eq. 34-a) (we=0,1021mm). It can be observed that

the difference between both values less than

5%.This implies the validity of the proposed
model.
VI. Conclusions
A new analytical model is proposed taking

into account shear strains in displacement fields for
FGM beams with clamped ends under bending. The
results in terms of displacement fields including
shear strains and section rotation, strains and
stresses, are presented. Higher-order shear strains
new theories are used which include shape
functions and stress nullities at the bottom and top
faces of the section through the beam thickness.
These theories do not require a shear correction
coefficient contrary to the Timoshenko’s beam
theory, and also to Euler-Bernoulli classical beam
theories (CBT). A fruitful numerical comparison is
carried out to compare results predicted from the
proposed model for clamped ends beam with those
obtained from the literature for simply supported
beams, in terms of displacements, deformations,
axial and shear stresses. The present
mathematical model could be used by designers in
composite materials field to more understand the
flexural behavior of FGM beams. In fact, the
results obtained in this study allow draw the
following conclusions:

(1)  The proposed high order model taking into
account the shear strain in displacement
fields for flexural FGM clamped ends beams
exhibits more precise results (nonlinear
behavior) with respect to those predicted
from Timoshenko beam theory (linear
behavior) in which shear strain effect is
considered by a correction coefficient and
also Euler-Bernoulli classical beam theory
(CBT)which neglects shear strains in
displacement fields.

(2) The results in terms of displacements
predicted from the proposed analytical
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model and the literature model, show that
there is a remarkable decrease by a quarter
when the boundary conditions of the beam
is changed from simply supported ends to
clamped ends.

(3) The proposed mathematical model
considering the shear strain in displacement
fields is efficient to predict the solution for
FGM beams with clamped ends under three-
point bending.

(4)  The new polynomial shear function exhibits
a good convergence with those of the other
higher order shear deformation beam
theories.

For future works, it is recommended to analyze the

proposed model for other materials of beams and

shells not used in this study.

Appendix-1: Case

Ni(x) and M;(x) are the resultant force, and the
resultant moment, respectively, depending on the
additional shape function, and are defined by the
following equations:

d
N;(x) = f v(z)

Txz as = b[A*SSYOXZ (x)]

0z
M; (%) = [ ¢(2) 0, dS
. 0u’() . 0*w
= b[B 11T_D 152
0y, ()
S
do, (x
90(0) = sinh Qyx — cosh Qyx — 1
F, x* L
u(x,z) = —ZZD11 [_Z + g*
48 Dy,” -
EADr, (1 — coshi{i2x)
sinhi{i
+ sinhi#i2 %) — ;9)?]
sinhiféi()ez)
FZ Dall
o 2b A% Dy (
— coshifi2 jx) + sinhi{i2 x)
sinhi?éiﬂgx))
sinhii,7)
F 1 L 48 D%,°
— Z .3 ) b 11
W =5l ¥ Yt ZaaLp, ¥
1
+ 0 (coshifi yx) — sinhifi2 yx)
0
-] 1]
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. D1y Ass LA s
0(x) == - x? x
2 A%ssDyy L 4D%y 8D
28D 11 — coshin
(1 coshit )
+ sinhifin gx)]]

Appendix-2: Case
It can be noted that only a pure flexure is reported.

For cut 0< x< L/2, the moment of bending is as the
following:

M(x) = %x —gL
1)

Integrate the previous equation and deduce the
expression for oy

P PL
Eldg =7x"——Zx+¢

)

The symmetry of the deformation requires:

L
0, =0
(©)
Equation (2) can be written:
_P.2_P . _ P2
EJg, =7x*—<Lx (4); o, _16Ex1(

1 (42)

The first derivation of the displacement expression
can be taken as the following:

owg P awo L

Ot O =2 =
P

T 2bhGy, (5-a)

The final integrate expression is:

L

wo(x) = — 0E 16E,1
(6)

The final displacement is reported in the expression
(eq.34)

pL? a 1x2+ p
212 2bhGy,

Ydx

The final maximum displacement is reported into
(eq.34-a) at the mid-span.
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