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ABSTRACT: As one of the important carriers for understanding the underwater environment, underwater 

images have important research significance in the fields of marine ecology, marine resources and marine 

environment monitoring. However, the degradation inherent in underwater images, such as color distortion due 

to light absorption and scattering, severely hampers their effectiveness in downstream applications, including 

object detection, recognition and tracking. Therefore, underwater image enhancement methods are crucial for 

restoring image quality and enhancing visual information. This paper aims to introduce several diverse 

enhancement approaches, including image-based, physics-model-based, and deep-learning-based. Additionally, 

we discuss relevant underwater image datasets and quality evaluation metrics. By doing so, we aim to provide 

insights into the landscape of underwater image enhancement research and its implications for advancing 

underwater vision systems. 
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I. INTRODUCTION 

Recently, underwater imaging technology 

has gained widespread attention in various fields, 

including marine biology research, underwater 

archaeology, ocean exploration, and underwater 

robotics, due to its wide range of applications [1]. 

However, capturing high-quality images in 

underwater environments is inherently challenging 

due to the unique optical properties of water, such as 

absorption, scattering, and attenuation of light. This 

degradation can result in color distortion, low 

contrast, and blurred details, seriously hindering 

subsequent image analysis and interpretation tasks. 

To address these challenges, numerous underwater 

image enhancement techniques have been developed 

to restore and improve the visual quality of 

underwater images. These methods aim to mitigate 

the effects of light attenuation, enhance contrast, 

correct color distortion and sharpen image details, 

ultimately promoting more accurate and reliable 

image-based analysis and decision-making in 

underwater applications. 

This paper aims to provide a comprehensive 

overview of the current representative underwater 

image enhancement methods. We categorize these 

methods into three approaches: image-based 

methods, physical model-based methods, and deep 

learning-based methods [2]. The classification 

strategy is shown in the Fig. 1. Image-based methods 

enhance contrast, sharpen edges, and correct colors 

by manipulating pixel values without explicitly 

modeling the underwater imaging process. Physical 

model-based methods utilize mathematical models to 

describe the light propagation and attenuation 

processes in water, enabling the reversal of these 

effects to restore image quality. In recent years, deep 

learning-based methods have shown remarkable 

performance in underwater image enhancement by 

learning complex mappings from degraded 

underwater images to their enhanced counterparts. 

Furthermore, underwater image datasets 

play a crucial role in the development and evaluation 

of underwater image enhancement methods. This 

paper presents several publicly available underwater 
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image datasets that have been widely utilized by the 

research community. These datasets encompass a 

wide range of underwater environments and imaging 

conditions, providing a valuable resource for training 

and testing underwater image enhancement 

algorithms.  

Evaluating the quality of enhanced 

underwater images is a crucial step in assessing the 

performance of different enhancement methods. This 

paper reviews several underwater image quality 

assessment metrics, including fully referenced and 

non-referenced metrics, which have been proposed to 

quantitatively assess the visual quality and fidelity of 

enhanced underwater images. These metrics enable 

an objective comparison of different enhancement 

techniques and contribute to the development of 

more efficient algorithms. 

In summary, this paper presents a 

comprehensive review of underwater image 

enhancement methods, underwater image datasets, 

and underwater image quality assessment metrics. By 

synthesizing information from these three areas, this 

paper aims to provide researchers and practitioners 

with a comprehensive understanding of the current 

state of underwater imaging research and identify 

potential directions for future work. This review 

hopes to contribute to the development of underwater 

imaging technology and its applications in various 

fields. 

II. UNDERWATER IMAGE ENHANCEMENT 

METHODS 

In this section, we provide an overview of 

various representative underwater image 

enhancement methods. 

2.1 Image-based Methods 

The image-based method does not depend 

on the underwater imaging model, and improves the 

brightness and contrast of the underwater image by 

directly adjusting the pixel value of the image. 

Image-based underwater image enhancement 

methods can be subdivided into the following 

methods: histogram-based method, fusion-based 

method and retinex-based method. 

2.1.1 Histogram-based Methods 

The histogram equalization-based algorithm 

[3] is an effective and straightforward method for 

image enhancement. This method's principle 

involves recalculating the gray world map of the 

image and transforming the histogram from a narrow 

single-peak distribution to a uniform distribution, 

ensuring that the image has an approximately equal 

number of pixels across the gray level range, thereby 

enhancing the image's brightness and contrast [4].  

In the early stages of underwater image 

enhancement technology research, researchers 

attempted to directly apply the aerial histogram 

equalization method to process underwater images. 

However, the enhancement effect was poor due to 

the neglect of the distinct differences between 

underwater and airborne imaging. Iqbal et al. [5] 

proposed an unsupervised color correction method in 

the field of underwater image enhancement, which is 

based on color correction and adaptive histogram 

stretching. This algorithm employs a color balancing 

method and adjusts the histogram distribution of the 

red and blue channels in the RGB color space, 

Fig.  1The classification strategy of underwater image enhancement methods. 
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effectively removing color bias and correcting 

saturation and brightness in underwater images. 

Ahmad et al. [6][7] successively proposed an 

adaptive histogram enhancement method using 

Rayleigh stretching limit contrast enhancement and a 

recursive histogram correction method. The former 

method improves image contrast, enhances detail, 

and reduces over-enhancement, over-saturation, and 

noise introduction. However, if the color proportion 

in the image is low, the image may become distorted. 

The latter method modifies the image color in the 

HSV color space, enhancing the contrast of the 

background region, but also increasing the 

algorithm's complexity. Li et al. [8] proposed a prior 

histogram distribution algorithm based on 

underwater image dehazing, which significantly 

improved the brightness and contrast of underwater 

images and greatly reduced the inference time. The 

disadvantage is that the enhancement effect is not 

significant when the degraded image has low 

brightness. While this method is effective in 

enhancing image quality, it can potentially 

overstretch the gray levels, leading to excessive 

enhancement and the introduction of artifacts. 

Consequently, this may result in a loss of detail or an 

unnatural appearance in the enhanced image. 

2.1.2 Fusion-based Methods 

The fusion-based method complements the 

information of different images by fusing multiple 

images of the same scene, so that the degraded image 

has richer and more accurate information.  

Ancuti et al. [9][10] used the 

complementary information between multiple images 

to optimize the acquisition process and the definition 

of weight information of fused images, which 

improved the exposure of enhanced images and 

retained the edge information of images. However, 

this algorithm cannot perform selective 

compensation. Pan et al. [11] obtained atomization 

image and color correction image of the original 

image through dehazing network and white balance, 

used the fusion strategy of Laplace pyramid for 

fusion, and used hybrid wavelet to achieve denoising 

and edge enhancement. The disadvantage of this 

algorithm is that it can not significantly improve the 

contrast of the image. Chang et al. [12] proposed an 

adaptive fusion algorithm for underwater image 

restoration. Based on optical characteristics and 

image processing knowledge, the algorithm extracts 

the background light and transmission images of 

underwater images, and performs adaptive weighted 

fusion according to their respective salient images. 

The algorithm can effectively restore the clarity and 

color information of the image, but the blurring still 

exists in the background area and the contrast is 

insufficient. Gao et al. [13] proposed an underwater 

image enhancement method based on Local Contrast 

Correct and multi-scale fusion. The multi-scale 

fusion method effectively addresses the issues of low 

contrast and color distortion in underwater images by 

fusing the locally contrast-corrected image with the 

sharpened image. Song et al. [14] introduced a 

method called Multiscale Fusion and Global 

Stretching of Dual-model (MFGS). MFGS utilizes 

white balance to correct color bias and incorporates 

contrast and spatial cues into a significance weight 

sparse strategy for achieving high-quality fusion. 

Furthermore, MFGS globally stretches all channels 

in the RGB color space to enhance color contrast. 

However, this algorithm exhibits limitations in 

enhancing color richness and reducing inference 

time.  

These fusion methods generally mitigate 

noise, thereby enhancing the overall contrast and 

refining edge and detail clarity. However, these 

methods necessitate the acquisition of multiple 

images and the fusion of weights. 

2.1.3 Retinex-based Methods 

The underwater image enhancement method 

based on Retinex simulates the human eye's adaptive 

light adjustment mechanism by disentangling color 

and brightness information from the image, and 

subsequently enhancing image quality through the 

adjustment of their relative proportions. Retinex 

theory, rooted in color constancy, mitigates the 

impact of irradiation components on object color, 

thereby eliminating degradation under uneven 

illumination and revealing the true scene depiction.  

Jobson et al. [15][16] introduced the 

Multiscale Retinex enhancement algorithm to 

enhance image quality. Joshi et al. [17] applied 

Retinex theory to underwater images for enhancing 

degraded image, albeit with limited improvement in 

visual effect despite advances. Fu et al. [18] 

presented a Retinex-based variant that utilizes an 

alternate direction optimization strategy to address 

reflectivity and illuminance issues, while 

incorporating color correction to mitigate 

underexposure and blur. However, the complexity of 

this algorithm is heightened by the iterative 
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optimization process. Bianco et al. [19] pioneered the 

use of color space for color correction in underwater 

images. The method manipulates the color 

component, adjusting its distribution around white 

balance and histogram cutoffs, and enhances image 

contrast by stretching the brightness component. 

Mercado et al. [20] introduced a deep-sea dark image 

enhancement technique based on MSRCR (Multi-

Scale Retinex with Color Restoration), aimed at 

mitigating color loss and addressing the issue of 

uneven illumination.  Zhang et al. [21] developed an 

underwater image enhancement algorithm based on 

extended multi-scale Retinex, incorporating both 

bilateral and trilateral filtering to mitigate the halos. 

The disadvantage of trilateral filtering is its lengthy 

processing time and limited contrast enhancement 

effect. Zhang et al. [22] presented an MSRCR-based 

single image dehazing method utilizing multi-

channel convolution, capable of enhancing the global 

contrast and detail information of underwater images 

while mitigating noise interference. However, this 

method occasionally fails to prevent the occurrence 

of overexposure. Tang et al. [23] developed an 

underwater video image enhancement method. This 

method initially achieves even pixel distribution 

through preprocessing, followed by the application of 

multi-scale Retinex with intensity channels to the 

preprocessed images, further enhancing contrast and 

color. However, the algorithm's real-time 

performance is constrained by its intricate steps.  

In conclusion, Retinex-based underwater 

image enhancement techniques effectively enhance 

the clarity and visibility of underwater images. 

However, their design and calculation processes are 

intricate, necessitating the integration of color 

correction, detail enhancement, and histogram 

equalization methods for optimal image 

enhancement.  

2.2 Physical Model-based Methods 

Different from image-based methods, 

physical model-based underwater image 

enhancement methods mimic the light propagation 

process underwater by constructing an optical model 

specific to underwater imaging. Subsequent to 

establishing the underwater imaging model, this 

approach utilizes prior knowledge and additional 

methodologies to approximate the model's 

parameters and reverse the degradation process, 

thereby yielding a clearer underwater image. 

Currently, the physical model-based methods include 

polarization-based methods and prior knowledge-

based methods.  

2.2.1 Polarization-based Methods 

The polarization-based method exploits the 

polarization attributes of scattered light to discern 

between scene light and scattered light, thereby 

enhancing the underwater image through the 

estimation of the scattered light's intensity and 

transmission coefficient. 

Schechner et al. [24] harnessed the 

polarization of light scattering in water to restore the 

visibility, contrast, and color fidelity of underwater 

images. Nonetheless, in the case of images exhibiting 

severe scattering, the enhancement outcomes may 

suffer from blurriness. Based on independent 

component analysis, Namer et al. [25] first 

approximated the intensity and polarization level of 

background light from polarization images. Then, the 

depth map of the underwater image is derived to 

facilitate the restoration of the degraded image. Chen 

et al. [26] segmented the underwater image 

according to whether it was an artificial illuminated 

area, compensated the artificial illuminated area in 

the image, eliminated the influence of artificial 

lighting on the underwater image, and solved the 

problem of uneven illumination. But this method 

may result in overexposure. Han et al. [27] 

considered the influence of backscattering in imaging 

and mitigated its effect by altering the light source, 

acquiring two orthogonally polarized images. This 

method effectively preserves edge information. 

Ferreira et al. [28] utilized particle swarm 

optimization to estimate polarization parameters and 

employed an unreferenced mass measure as the cost 

function for image recovery, resulting in improved 

visual quality. However, the parameter optimization 

process increases the time complexity of the 

algorithm.  

In summary, while these methods enhance 

underwater image quality, they require multiple 

images of the same scene captured at different 

polarization angles as prior information, thereby 

restricting their applicability. 

2.2.2 Prior knowledge-based Methods 

The prior knowledge-based methods utilize 

the existing knowledge of underwater environment 

features to estimate the parameters of the underwater 

image degradation model and invert the degradation 

process to obtain a clear underwater image. 

He et al. [29] introduced the Dark Channel 
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Prior (DCP) technique, originally designed for 

dehaze removal in images, which has gradually been 

adapted for enhancing underwater image scenes. This 

method employs the DCP theory to solve for the 

transmitted image and atmospheric light value, while 

utilizing the atmospheric scattering model to restore 

the image. However, when Liu et al. [30] directly 

applied the DCP method to underwater image 

enhancement, the enhancement effect was minimal, 

and even led to degradation. To address this, Yang et 

al. [31] proposed a rapid underwater image 

restoration method based on DCP, which utilized 

median filtering to estimate the depth of field 

information and introduced a color correction 

method to enhance image contrast. Nevertheless, this 

approach was unable to recover underwater images 

with low brightness and color deviation. Chiang et al. 

[32] overcame these limitations by proposing an 

underwater image enhancement method that 

combined wavelength compensation with DCP 

dehazing. This method not only corrected image blur 

and distortion caused by artificial light sources but 

also improved image quality by compensating for the 

varying attenuation characteristics of the RGB 

channels. Drews et al. [33] introduced the 

Underwater Dark Channel Prior (UDCP) method. 

This method solely focuses on the blue and green 

channels, resulting in a more precise underwater 

transmission map compared to the DCP algorithm, 

thereby enhancing the image recovery performance. 

Galdran et al. [34] devised an automatic red channel 

underwater image restoration method. This approach 

utilizes the red channel prior and incorporates 

saturation information to modulate the impact of 

artificial light sources. Li et al. [35] presented a 

method that combines red channel correction with 

blue and green channel dehazing. This method 

employs the gray world algorithm and adaptive 

exposure images to adjust the red channel's color, 

simultaneously addressing issues of overexposure 

and underexposure areas, thereby enhancing 

visibility and contrast. However, for underwater 

images captured in uneven lighting conditions, the 

quality of recovered images remains suboptimal. 

Meng et al. [36] introduced an underwater image 

enhancement technique that integrates color 

correction with image sharpening. When the value of 

red channel is approximates approaching the blue 

channel, a color balance method is employed for 

image restoration. Furthermore, the algorithm utilizes 

the Maximum a Posteriori Probability (MAP) 

method to sharpen the image subsequent to color 

correction. This algorithm enhances image visibility 

while preserving foreground texture details, albeit at 

the cost of introducing numerous parameters.  

While these methods can effectively 

enhance image quality, they rely heavily on 

obtaining precise prior information. Obtaining this 

information, however, poses significant challenges 

and necessitates the estimation of prior knowledge 

through the utilization of mathematical or statistical 

models. Accurately estimating prior knowledge is 

pivotal in achieving high-quality recovery of 

underwater images. 

2.3 Learning-based Methods 

In recent years, deep learning has garnered 

significant attention in the field of computer vision 

owing to its robust feature learning capabilities. 

Furthermore, deep learning-based underwater image 

enhancement techniques have garnered the interest of 

researchers in the field. The objective of deep 

learning-based underwater image enhancement is to 

learn the mapping between degraded and clear 

underwater images, leveraging extensive training 

data. Based on varying network architectures, it can 

be categorized into two enhancement approaches: 

Convolutional Neural Networks-based (CNN-based) 

methods and Generative Adversarial Networks-based 

(GAN-based) methods. 

2.3.1 CNN-based Methods 

CNN is a classical type of deep feed 

forward artificial neural network, comprising 

multiple convolutional layers designed to efficiently 

extract feature representations, ranging from low-

level details to high-level semantic information, 

enabling the processing of diverse computer vision 

tasks. 

Gai et al. [37] proposed DehazeNet, a deep 

neural network that utilizes convolutional neural 

networks to extract media-transmitted images and 

employs an atmospheric scattering model to restore 

degraded images, achieving end-to-end image de-

hazing. However, this network proves ineffective 

when directly applied to underwater image 

processing tasks. Shin et al. [38] introduced a 

universal convolution structure to recover underwater 

images by learning both the transmission pattern and 

the background light of underwater images. Although 

the model exhibits effective performance in 

removing haze, it suffers from color 
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overcompensation. Ding et al. [39] addressed 

distorted images using an adaptive color correction 

algorithm. This algorithm employs a CNN network 

to estimate the depth map of the image after color 

correction and converts it directly to the transmission 

map for restoration. Nevertheless, the adaptability 

and real-time performance of the algorithm require 

improvement. Li et al. [40] constructed a large-scale 

underwater image enhancement dataset 

encompassing various water types based on the 

physical model of images and the optical 

characteristics of underwater scenes. Bseides, they 

proposed UWCNN, an underwater image 

enhancement model based on underwater scene 

priori. UWCNN trains multiple networks on different 

degradation types of underwater image datasets and 

employs multiple loss functions for joint 

optimization to reconstruct clear underwater images 

while preserving the original structure and texture. 

Uplavikar et al. [41] employed encoder-decoder 

network to reconstruct clear underwater images and 

utilized an independent CNN as a water classifier to 

determine the water types. To address the diversity of 

underwater image distribution, they incorporated 

adversarial training, forcing the model to learn 

agnostic features of the water types from degraded 

underwater images. This method enhanced the 

generalization performance of the model by reducing 

the interference of domain distribution diversity, 

albeit with a challenging optimization process. Naik 

et al. [42] introduced a shallow neural network 

comprising a fully connected convolutional network 

and three densely connected convolutional blocks. 

This network effectively avoided overfitting through 

skip connections and exhibited well generalization 

performance and real-time efficiency. However, the 

enhancement effect requires further improvement. 

Yang et al. [43] proposed integrating RGB and HSV 

color spaces into a CNN network. RGB pixel block 

operations facilitated denoising and chromatic 

aberration correction, while HSV enabled adjustment 

of color, brightness, and saturation in underwater 

images.  

Overall, CNN-based methods should 

consider the underwater imaging process during 

design to enhance interpretability and better meet 

practical application needs. 

2.3.2 GAN-based Methods 

GAN is a neural network structure 

consisting of generator and discriminator. The 

objective of the generator is to learn to produce high-

quality underwater images, while the discriminator 

identifies differences between generated and real 

underwater images. Through iterative training, the 

generator progressively enhances its ability to 

generate underwater images, approximating the 

effect of real underwater images as closely as 

possible. 

Due to the difficulty in obtaining pairs of 

underwater images, relevant researchers [44][45] 

employed GAN networks to generate a substantial 

amount of underwater images, addressing the issue 

of limited underwater image enhancement datasets. 

Li et al. [46] proposed an underwater image 

generation adversarial network that utilizes aerial and 

synthetic underwater images as training data for real-

time color correction of a single underwater image. 

Fabbri et al. [47] proposed an underwater image 

enhancement model based on a generative 

adversarial network, which restores underwater 

images by incorporating absolute error loss and 

gradient loss. Guo et al. [48] proposed a multi-scale 

dense generative adversarial network for underwater 

image enhancement, utilizing multi-scale, dense 

cascade, and residual learning operations to enhance 

model performance. Liu et al. [49] proposed a multi-

scale fusion adversarial network that fuses local and 

global features to obtain more discriminative feature 

expressions, facilitating more efficient network 

learning. Yang et al. [50] proposed an underwater 

image enhancement method with dual discriminators 

that captures local and global semantic information, 

constraining the generator to produce real and natural 

results. Lu et al. [51] embedded prior knowledge into 

the cycle generation adversarial network and used 

depth information to guide multi-scale calculation, 

achieving good performance in contrast enhancement 

and color correction. Li et al. [52] proposed a fusion 

adversarial network for underwater image 

enhancement, utilizing multiple target loss functions 

to correct color bias and spectral normalization to 

enhance image quality. Park et al. [53] added a pair 

of additional discriminators based on the cyclic 

adversarial generation network, and introduced an 

adaptive weighting method to limit the loss of the 

two discriminators.  

In general, GAN-based methods mainly rely 

on high quality training data, reasonable network 

structure and effective training methods. 
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III. UNDERWATER IMAGE ENHANCEMENT 

DATASETS 

Underwater image enhancement method 

needs a lot of underwater image data to train or 

optimize. In the process of training and testing, the 

underwater image dataset adopted by the model 

should not only consider the diversity of underwater 

scenes and the richness of content, but also consider 

whether the amount of underwater image data is 

sufficient. We introduce a variety of underwater 

image datasets, including the paried real world 

datasets UIEB [49], UFO [54], and EUVP [55], and 

unparied real world dataset RUIE [56], as well as the 

synthetic and paried underwater image dataset [40]. 

These datasets all collect a large number of 

real or synthetic underwater images from different 

domains and different imaging equipment, covering 

multiple types of degradation and rich image content. 

Most of them also provide corresponding reference 

images or images that have been processed by 

specialized underwater image enhancement 

algorithms in order to evaluate and compare the 

effects of different underwater image enhancement 

methods. UIEB contains 890 original underwater 

images and corresponding high-quality reference 

images, as well as 60 challenging underwater images. 

This dataset contains multiple underwater scenes, a 

wide range of image content and a different range of 

colors, and also provides high-quality reference 

images that can be used to guide image quality 

evaluation and end-to-end learning. The UFO dataset 

contains 1500 training samples and 120 test samples 

and can be used for salient object detection, super-

resolution reconstruction, and underwater image 

enhancement. Underwater images of this dataset 

were collected at different locations and under 

different water types, and significant foreground 

pixels were manually marked. The EUVP dataset 

consists of 20K underwater images with 12K paired 

instances and 8K unpaired instances. The EUVP 

dataset was shot with a variety of different cameras, 

covering different visibility and sea areas. Some of 

the images were taken from publicly available 

Youtube videos to accommodate the wide range of 

natural variations in the data. The RUIE dataset 

consists of three subsets: UIQS, UCCS and UHTS. 

UIQS is divided into five quality levels, each 

containing 726 underwater images, totaling 3,630 

images. The UCCS subset consists of 300 

underwater images, including 100 blue distorted, 100 

green distorted, and 100 blue-green distorted images. 

The UHTS subset consists of 300 underwater images 

of different species of Marine life for evaluation of 

classification and detection methods. And Li et al. 

[40] used attenuation coefficients to characterize 

different water scenes and constructed 10 different 

types of image datasets using the RGB-D NYU-v2 

indoor dataset [57]. 

IV. QUALITY EVALUATION METRICS 

Image quality evaluation is an important 

index to measure image quality. According to the 

situation with or without reference images, 

quantitative evaluation can be divided into reference 

image quality evaluation and non-reference image 

quality evaluation. 

4.1 Reference Evaluation Metrics 

For reference evaluation metrics, the widely 

employed full-reference image quality evaluation 

methods include Peak Signal to Noise Ratio (PSNR) 

[58] and Structural Similarity (SSIM) [59]. 

Images processed through neural networks 

or other technical approaches differ from their 

original counterparts, and the PSNR value is 

commonly utilized to assess whether the quality of 

the processed image satisfies the desired standards. 

For an image of size 𝑚 × 𝑛, the calculation process 

of PSNR can be expressed as follows: 

𝑃𝑆𝑁𝑅(𝑥, 𝑦) = 10 × log10

2552

𝐸𝑀𝑆

# 1  

𝐸𝑀𝑆(𝑥, 𝑦) =
1

𝑚𝑛
   𝑥 𝑖, 𝑗 − 𝑦 𝑖, 𝑗  2

𝑛−1

𝑛=0

𝑚−1

𝑖=0
# 2  

Where 𝑥 represents the processed image, 𝑦 represents 

the clear reference image, and 𝐸𝑀𝑆  is the mean 

square error. Higher PSNR values indicate a lesser 

degree of image distortion. 

SSIM evaluates the similarity between two images 

based on three components: luminance similarity, 

contrast similarity, and structural similarity. The 

SSIM calculation formula is presented as follows: 

𝑆𝑆𝐼𝑀 𝑥, 𝑦 =  𝑙 𝑥, 𝑦 𝛼 × 𝑐 𝑥, 𝑦 𝛽 × 𝑠 𝑥, 𝑦 𝛾  # 3  

𝑙 𝑥, 𝑦 =
2𝜇𝑥𝜇𝑦 + 𝑐1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1

# 4  

𝑐 𝑥, 𝑦 =
2𝜎𝑥𝜎𝑦 + 𝑐2

𝜎𝑥
2𝜎𝑦

2 + 𝑐2

# 5  

𝑠 𝑥, 𝑦 =
𝜎𝑥𝑦 + 𝑐3

𝜎𝑥𝜎𝑦 + 𝑐3

# 6  

here, 𝒙 represents the processed image, 

whereas 𝒚 represents the clear reference image. The 

mean values of 𝒙 and 𝒚 are denoted by 𝝁𝒙  and𝝁𝒙 , 
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respectively, and their variances are denoted 

by 𝝈𝒙
𝟐  and 𝝈𝒚

𝟐 .Constants 𝒄𝒊  ( 𝒊 = 𝟏, 𝟐, 𝟑 ) are 

introduced to prevent the denominator from being 

zero.The value of SSIM ranges from 0 to 1, with 

higher values indicating greater similarity between 

the two images.To simplify the calculation, the 

common choice is to set 𝜶 = 𝜷 = 𝜸 = 𝟏 and 𝒄𝟐 =

𝟐𝒄𝟑. The simplified SSIM formula can expressed as: 

𝑆𝑆𝐼𝑀 𝑥, 𝑦 =
 2𝜇𝑥𝜇𝑦 + 𝑐1  2𝜎𝑥𝑦 + 𝑐2 

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
# 7  

4.2 Non-reference Evaluation Metrics 

For evaluating image quality without 

reference images, two non-reference metrics can be 

employed: Underwater Color Image Quality 

Evaluation (UCIQE) [60] and Underwater Image 

Quality Measurement (UIQM) [61]. 

UCIQE evaluates an image's chroma, 

saturation, and contrast, with chroma quantifying 

color bias, contrast measuring local contrast of 

targets, and the mean saturation indicating color 

purity. The calculation formula for UCIQE can be 

defined as: 

𝑈𝐶𝐼𝑄𝐸 = 𝑐1 × 𝜎𝑐 + 𝑐2 × 𝑐𝑙 + 𝑐3 × 𝜇𝑠# 8  

where 𝒄𝟏, 𝒄𝟐, 𝒄𝟑 are weight coefficients, and 𝝈𝒄 , 𝒄𝒍 , 

and 𝝁𝒔  represent the standard deviation of 

chromaticity, luminance contrast, and mean 

saturation, respectively.Higher UCIQE values 

indicate better image quality. 

UIQM comprises three components: 

Underwater Image Colourfulness Measure (UICM), 

Underwater Image Sharpness Measure (UISM), and 

Underwater Image Contrast Measure (UIConM).The 

calculation formula for UIQM as follows: 

𝑈��𝑄 𝑀 = 𝑐1 × 𝑈𝐼𝐶𝑀 + 𝑐2 × 𝑈𝐼𝑆𝑀 + 𝑐3 × 𝑈𝐼𝐶𝑜𝑛𝑀 # 9  

where 𝒄𝟏, 𝒄𝟐 , and𝒄𝟑  are the weight coefficients for 

UICM, UISM, and UIConM, respectively. Higher 

UIQM values indicate better image quality. 

V. CONCLUSION 

At present, the mainstream underwater 

image enhancement technology is aimed at a single 

water scene. Although there are relevant technologies 

that can cope with multiple types of degraded 

underwater images, it is still difficult to take into 

account the effectiveness, universality and robustness 

of the method. Therefore, it is of great significance to 

study the diversity of underwater image degradation 

and achieve a universal and robust underwater image 

enhancement method for different degradation types. 

At the same time, research on the multi-frequency of 

underwater image information, design underwater 

image sharpening methods that can generate high-

quality enhanced results, and then promote the 

application of underwater image sharpening 

technology in underwater survey, marine biological 

research and underwater rescue. 
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