An Overview of Underwater Image Enhancement Techniques

Bin Li¹, Xixi Zhu²

¹(School of Information Engineering,North China University of Water Resources and Electric Power, China)

²(College of Materials Science and Engineering, Liaoning Technical University, China)

ABSTRACT: As one of the important carriers for understanding the underwater environment, underwater images have important research significance in the fields of marine ecology, marine resources and marine environment monitoring. However, the degradation inherent in underwater images, such as color distortion due to light absorption and scattering, severely hampers their effectiveness in downstream applications, including object detection, recognition and tracking. Therefore, underwater image enhancement methods are crucial for restoring image quality and enhancing visual information. This paper aims to introduce several diverse enhancement approaches, including image-based, physics-model-based, and deep-learning-based. Additionally, we discuss relevant underwater image datasets and quality evaluation metrics. By doing so, we aim to provide insights into the landscape of underwater image enhancement research and its implications for advancing underwater vision systems.

KEYWORDS - Underwater Image Enhancement, Underwater Image Dataset, Quality Evaluation Metrics

I. INTRODUCTION

Recently, underwater imaging technology has gained widespread attention in various fields, including marine biology research, underwater archaeology, ocean exploration, and underwater robotics, due to its wide range of applications [1]. high-quality However, capturing underwater environments is inherently challenging due to the unique optical properties of water, such as absorption, scattering, and attenuation of light. This degradation can result in color distortion, low contrast, and blurred details, seriously hindering subsequent image analysis and interpretation tasks. To address these challenges, numerous underwater image enhancement techniques have been developed to restore and improve the visual quality of underwater images. These methods aim to mitigate the effects of light attenuation, enhance contrast, correct color distortion and sharpen image details, ultimately promoting more accurate and reliable image-based analysis and decision-making in underwater applications.

This paper aims to provide a comprehensive overview of the current representative underwater image enhancement methods. We categorize these methods into three approaches: image-based methods, physical model-based methods, and deep learning-based methods [2]. The classification strategy is shown in the Fig. 1. Image-based methods enhance contrast, sharpen edges, and correct colors by manipulating pixel values without explicitly modeling the underwater imaging process. Physical model-based methods utilize mathematical models to describe the light propagation and attenuation processes in water, enabling the reversal of these effects to restore image quality. In recent years, deep learning-based methods have shown remarkable performance in underwater image enhancement by learning complex mappings from underwater images to their enhanced counterparts.

Furthermore, underwater image datasets play a crucial role in the development and evaluation of underwater image enhancement methods. This paper presents several publicly available underwater

www.ijmret.org ISSN: 2456-5628 Page 23

image datasets that have been widely utilized by the research community. These datasets encompass a wide range of underwater environments and imaging conditions, providing a valuable resource for training and testing underwater image enhancement algorithms.

enhancement methods.

2.1 Image-based Methods

The image-based method does not depend on the underwater imaging model, and improves the brightness and contrast of the underwater image by

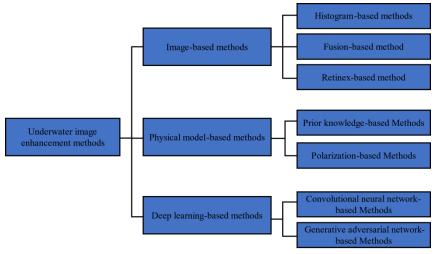


Fig. 1The classification strategy of underwater image enhancement methods.

Evaluating the quality of enhanced underwater images is a crucial step in assessing the performance of different enhancement methods. This paper reviews several underwater image quality assessment metrics, including fully referenced and non-referenced metrics, which have been proposed to quantitatively assess the visual quality and fidelity of enhanced underwater images. These metrics enable an objective comparison of different enhancement techniques and contribute to the development of more efficient algorithms.

summary, In this paper presents a comprehensive review of underwater image enhancement methods, underwater image datasets, and underwater image quality assessment metrics. By synthesizing information from these three areas, this paper aims to provide researchers and practitioners with a comprehensive understanding of the current state of underwater imaging research and identify potential directions for future work. This review hopes to contribute to the development of underwater imaging technology and its applications in various fields.

II. UNDERWATER IMAGE ENHANCEMENT METHODS

In this section, we provide an overview of various representative underwater image

directly adjusting the pixel value of the image. Image-based underwater image enhancement methods can be subdivided into the following methods: histogram-based method, fusion-based method and retinex-based method.

2.1.1 Histogram-based Methods

The histogram equalization-based algorithm [3] is an effective and straightforward method for image enhancement. This method's principle involves recalculating the gray world map of the image and transforming the histogram from a narrow single-peak distribution to a uniform distribution, ensuring that the image has an approximately equal number of pixels across the gray level range, thereby enhancing the image's brightness and contrast [4].

In the early stages of underwater image enhancement technology research, researchers attempted to directly apply the aerial histogram equalization method to process underwater images. However, the enhancement effect was poor due to the neglect of the distinct differences between underwater and airborne imaging. Iqbal et al. [5] proposed an unsupervised color correction method in the field of underwater image enhancement, which is based on color correction and adaptive histogram stretching. This algorithm employs a color balancing method and adjusts the histogram distribution of the red and blue channels in the RGB color space,

effectively removing color bias and correcting saturation and brightness in underwater images. Ahmad et al. [6][7] successively proposed an adaptive histogram enhancement method using Rayleigh stretching limit contrast enhancement and a recursive histogram correction method. The former method improves image contrast, enhances detail, and reduces over-enhancement, over-saturation, and noise introduction. However, if the color proportion in the image is low, the image may become distorted. The latter method modifies the image color in the HSV color space, enhancing the contrast of the background region, but also increasing algorithm's complexity. Li et al. [8] proposed a prior histogram distribution algorithm underwater image dehazing, which significantly improved the brightness and contrast of underwater images and greatly reduced the inference time. The disadvantage is that the enhancement effect is not significant when the degraded image has low brightness. While this method is effective in enhancing image quality, it can potentially overstretch the gray levels, leading to excessive enhancement and the introduction of artifacts. Consequently, this may result in a loss of detail or an unnatural appearance in the enhanced image.

2.1.2 Fusion-based Methods

The fusion-based method complements the information of different images by fusing multiple images of the same scene, so that the degraded image has richer and more accurate information.

Ancuti et al. [9][10] used the complementary information between multiple images to optimize the acquisition process and the definition of weight information of fused images, which improved the exposure of enhanced images and retained the edge information of images. However, algorithm cannot perform compensation. Pan et al. [11] obtained atomization image and color correction image of the original image through dehazing network and white balance, used the fusion strategy of Laplace pyramid for fusion, and used hybrid wavelet to achieve denoising and edge enhancement. The disadvantage of this algorithm is that it can not significantly improve the contrast of the image. Chang et al. [12] proposed an adaptive fusion algorithm for underwater image restoration. Based on optical characteristics and image processing knowledge, the algorithm extracts the background light and transmission images of

underwater images, and performs adaptive weighted fusion according to their respective salient images. The algorithm can effectively restore the clarity and color information of the image, but the blurring still exists in the background area and the contrast is insufficient. Gao et al. [13] proposed an underwater image enhancement method based on Local Contrast Correct and multi-scale fusion. The multi-scale fusion method effectively addresses the issues of low contrast and color distortion in underwater images by fusing the locally contrast-corrected image with the sharpened image. Song et al. [14] introduced a method called Multiscale Fusion and Global Stretching of Dual-model (MFGS). MFGS utilizes white balance to correct color bias and incorporates contrast and spatial cues into a significance weight sparse strategy for achieving high-quality fusion. Furthermore, MFGS globally stretches all channels in the RGB color space to enhance color contrast. However, this algorithm exhibits limitations in enhancing color richness and reducing inference time.

These fusion methods generally mitigate noise, thereby enhancing the overall contrast and refining edge and detail clarity. However, these methods necessitate the acquisition of multiple images and the fusion of weights.

2.1.3 Retinex-based Methods

ISSN: 2456-5628

The underwater image enhancement method based on Retinex simulates the human eye's adaptive light adjustment mechanism by disentangling color and brightness information from the image, and subsequently enhancing image quality through the adjustment of their relative proportions. Retinex theory, rooted in color constancy, mitigates the impact of irradiation components on object color, thereby eliminating degradation under uneven illumination and revealing the true scene depiction.

Jobson et al. [15][16] introduced the Multiscale Retinex enhancement algorithm to enhance image quality. Joshi et al. [17] applied Retinex theory to underwater images for enhancing degraded image, albeit with limited improvement in visual effect despite advances. Fu et al. [18] presented a Retinex-based variant that utilizes an alternate direction optimization strategy to address illuminance reflectivity and issues, while incorporating color correction mitigate underexposure and blur. However, the complexity of this algorithm is heightened by the iterative

optimization process. Bianco et al. [19] pioneered the use of color space for color correction in underwater images. The method manipulates the color component, adjusting its distribution around white balance and histogram cutoffs, and enhances image contrast by stretching the brightness component. Mercado et al. [20] introduced a deep-sea dark image enhancement technique based on MSRCR (Multi-Scale Retinex with Color Restoration), aimed at mitigating color loss and addressing the issue of uneven illumination. Zhang et al. [21] developed an underwater image enhancement algorithm based on extended multi-scale Retinex, incorporating both bilateral and trilateral filtering to mitigate the halos. The disadvantage of trilateral filtering is its lengthy processing time and limited contrast enhancement effect. Zhang et al. [22] presented an MSRCR-based single image dehazing method utilizing multichannel convolution, capable of enhancing the global contrast and detail information of underwater images while mitigating noise interference. However, this method occasionally fails to prevent the occurrence of overexposure. Tang et al. [23] developed an underwater video image enhancement method. This method initially achieves even pixel distribution through preprocessing, followed by the application of multi-scale Retinex with intensity channels to the preprocessed images, further enhancing contrast and color. However, the algorithm's real-time performance is constrained by its intricate steps.

In conclusion, Retinex-based underwater image enhancement techniques effectively enhance the clarity and visibility of underwater images. However, their design and calculation processes are intricate, necessitating the integration of color correction, detail enhancement, and histogram equalization methods for optimal image enhancement.

2.2 Physical Model-based Methods

Different from image-based methods, model-based underwater physical image enhancement methods mimic the light propagation process underwater by constructing an optical model specific to underwater imaging. Subsequent to establishing the underwater imaging model, this approach utilizes prior knowledge and additional methodologies approximate to the model's parameters and reverse the degradation process, thereby yielding a clearer underwater image. Currently, the physical model-based methods include polarization-based methods and prior knowledge-based methods.

2.2.1 Polarization-based Methods

The polarization-based method exploits the polarization attributes of scattered light to discern between scene light and scattered light, thereby enhancing the underwater image through the estimation of the scattered light's intensity and transmission coefficient.

Schechner et al. [24] harnessed the polarization of light scattering in water to restore the visibility, contrast, and color fidelity of underwater images. Nonetheless, in the case of images exhibiting severe scattering, the enhancement outcomes may suffer from blurriness. Based on independent component analysis, Namer et al. [25] first approximated the intensity and polarization level of background light from polarization images. Then, the depth map of the underwater image is derived to facilitate the restoration of the degraded image. Chen et al. [26] segmented the underwater image according to whether it was an artificial illuminated area, compensated the artificial illuminated area in the image, eliminated the influence of artificial lighting on the underwater image, and solved the problem of uneven illumination. But this method may result in overexposure. Han et al. [27] considered the influence of backscattering in imaging and mitigated its effect by altering the light source, acquiring two orthogonally polarized images. This method effectively preserves edge information. Ferreira et al. [28] utilized particle swarm optimization to estimate polarization parameters and employed an unreferenced mass measure as the cost function for image recovery, resulting in improved visual quality. However, the parameter optimization process increases the time complexity of the algorithm.

In summary, while these methods enhance underwater image quality, they require multiple images of the same scene captured at different polarization angles as prior information, thereby restricting their applicability.

2.2.2 Prior knowledge-based Methods

The prior knowledge-based methods utilize the existing knowledge of underwater environment features to estimate the parameters of the underwater image degradation model and invert the degradation process to obtain a clear underwater image.

He et al. [29] introduced the Dark Channel

Page 26

Prior (DCP) technique, originally designed for dehaze removal in images, which has gradually been adapted for enhancing underwater image scenes. This method employs the DCP theory to solve for the transmitted image and atmospheric light value, while utilizing the atmospheric scattering model to restore the image. However, when Liu et al. [30] directly applied the DCP method to underwater image enhancement, the enhancement effect was minimal, and even led to degradation. To address this, Yang et al. [31] proposed a rapid underwater image restoration method based on DCP, which utilized median filtering to estimate the depth of field information and introduced a color correction method to enhance image contrast. Nevertheless, this approach was unable to recover underwater images with low brightness and color deviation. Chiang et al. [32] overcame these limitations by proposing an underwater image enhancement method that combined wavelength compensation with DCP dehazing. This method not only corrected image blur and distortion caused by artificial light sources but also improved image quality by compensating for the varying attenuation characteristics of the RGB channels. Drews et al. [33] introduced the Underwater Dark Channel Prior (UDCP) method. This method solely focuses on the blue and green channels, resulting in a more precise underwater transmission map compared to the DCP algorithm, thereby enhancing the image recovery performance. Galdran et al. [34] devised an automatic red channel underwater image restoration method. This approach utilizes the red channel prior and incorporates saturation information to modulate the impact of artificial light sources. Li et al. [35] presented a method that combines red channel correction with blue and green channel dehazing. This method employs the gray world algorithm and adaptive exposure images to adjust the red channel's color, simultaneously addressing issues of overexposure and underexposure areas, thereby enhancing visibility and contrast. However, for underwater images captured in uneven lighting conditions, the quality of recovered images remains suboptimal. Meng et al. [36] introduced an underwater image enhancement technique that integrates color correction with image sharpening. When the value of red channel is approximates approaching the blue channel, a color balance method is employed for image restoration. Furthermore, the algorithm utilizes the Maximum a Posteriori Probability (MAP)

method to sharpen the image subsequent to color correction. This algorithm enhances image visibility while preserving foreground texture details, albeit at the cost of introducing numerous parameters.

While these methods can effectively enhance image quality, they rely heavily on obtaining precise prior information. Obtaining this information, however, poses significant challenges and necessitates the estimation of prior knowledge through the utilization of mathematical or statistical models. Accurately estimating prior knowledge is pivotal in achieving high-quality recovery of underwater images.

2.3 Learning-based Methods

In recent years, deep learning has garnered significant attention in the field of computer vision owing to its robust feature learning capabilities. Furthermore, deep learning-based underwater image enhancement techniques have garnered the interest of researchers in the field. The objective of deep learning-based underwater image enhancement is to learn the mapping between degraded and clear underwater images, leveraging extensive training data. Based on varying network architectures, it can be categorized into two enhancement approaches: Convolutional Neural Networks-based (CNN-based) methods and Generative Adversarial Networks-based (GAN-based) methods.

2.3.1 CNN-based Methods

CNN is a classical type of deep feed forward artificial neural network, comprising multiple convolutional layers designed to efficiently extract feature representations, ranging from low-level details to high-level semantic information, enabling the processing of diverse computer vision tasks.

Gai et al. [37] proposed DehazeNet, a deep neural network that utilizes convolutional neural networks to extract media-transmitted images and employs an atmospheric scattering model to restore degraded images, achieving end-to-end image dehazing. However, this network proves ineffective when directly applied to underwater image processing tasks. Shin et al. [38] introduced a universal convolution structure to recover underwater images by learning both the transmission pattern and the background light of underwater images. Although the model exhibits effective performance in removing haze, it suffers from color

overcompensation. Ding et al. [39] addressed distorted images using an adaptive color correction algorithm. This algorithm employs a CNN network to estimate the depth map of the image after color correction and converts it directly to the transmission map for restoration. Nevertheless, the adaptability and real-time performance of the algorithm require improvement. Li et al. [40] constructed a large-scale underwater image enhancement dataset encompassing various water types based on the physical model of images and the optical characteristics of underwater scenes. Bseides, they UWCNN, underwater proposed an image enhancement model based on underwater scene priori. UWCNN trains multiple networks on different degradation types of underwater image datasets and employs multiple loss functions optimization to reconstruct clear underwater images while preserving the original structure and texture. Uplavikar et al. [41] employed encoder-decoder network to reconstruct clear underwater images and utilized an independent CNN as a water classifier to determine the water types. To address the diversity of underwater image distribution, they incorporated adversarial training, forcing the model to learn agnostic features of the water types from degraded underwater images. This method enhanced the generalization performance of the model by reducing the interference of domain distribution diversity, albeit with a challenging optimization process. Naik et al. [42] introduced a shallow neural network comprising a fully connected convolutional network and three densely connected convolutional blocks. This network effectively avoided overfitting through skip connections and exhibited well generalization performance and real-time efficiency. However, the enhancement effect requires further improvement. Yang et al. [43] proposed integrating RGB and HSV color spaces into a CNN network. RGB pixel block operations facilitated denoising and chromatic aberration correction, while HSV enabled adjustment of color, brightness, and saturation in underwater images.

Overall, CNN-based methods should consider the underwater imaging process during design to enhance interpretability and better meet practical application needs.

2.3.2 GAN-based Methods

GAN is a neural network structure consisting of generator and discriminator. The

objective of the generator is to learn to produce highquality underwater images, while the discriminator identifies differences between generated and real underwater images. Through iterative training, the generator progressively enhances its ability to generate underwater images, approximating the effect of real underwater images as closely as possible.

Due to the difficulty in obtaining pairs of underwater images, relevant researchers [44][45] employed GAN networks to generate a substantial amount of underwater images, addressing the issue of limited underwater image enhancement datasets. Li et al. [46] proposed an underwater image generation adversarial network that utilizes aerial and synthetic underwater images as training data for realtime color correction of a single underwater image. Fabbri et al. [47] proposed an underwater image enhancement model based on a generative adversarial network, which restores underwater images by incorporating absolute error loss and gradient loss. Guo et al. [48] proposed a multi-scale dense generative adversarial network for underwater image enhancement, utilizing multi-scale, dense cascade, and residual learning operations to enhance model performance. Liu et al. [49] proposed a multiscale fusion adversarial network that fuses local and global features to obtain more discriminative feature expressions, facilitating more efficient network learning. Yang et al. [50] proposed an underwater image enhancement method with dual discriminators that captures local and global semantic information, constraining the generator to produce real and natural results. Lu et al. [51] embedded prior knowledge into the cycle generation adversarial network and used depth information to guide multi-scale calculation, achieving good performance in contrast enhancement and color correction. Li et al. [52] proposed a fusion adversarial network for underwater image enhancement, utilizing multiple target loss functions to correct color bias and spectral normalization to enhance image quality. Park et al. [53] added a pair of additional discriminators based on the cyclic adversarial generation network, and introduced an adaptive weighting method to limit the loss of the two discriminators.

In general, GAN-based methods mainly rely on high quality training data, reasonable network structure and effective training methods.

III. UNDERWATER IMAGE ENHANCEMENT DATASETS

Underwater image enhancement method needs a lot of underwater image data to train or optimize. In the process of training and testing, the underwater image dataset adopted by the model should not only consider the diversity of underwater scenes and the richness of content, but also consider whether the amount of underwater image data is sufficient. We introduce a variety of underwater image datasets, including the paried real world datasets UIEB [49], UFO [54], and EUVP [55], and unparied real world dataset RUIE [56], as well as the synthetic and paried underwater image dataset [40].

These datasets all collect a large number of real or synthetic underwater images from different domains and different imaging equipment, covering multiple types of degradation and rich image content. Most of them also provide corresponding reference images or images that have been processed by specialized underwater image enhancement algorithms in order to evaluate and compare the effects of different underwater image enhancement methods. UIEB contains 890 original underwater images and corresponding high-quality reference images, as well as 60 challenging underwater images. This dataset contains multiple underwater scenes, a wide range of image content and a different range of colors, and also provides high-quality reference images that can be used to guide image quality evaluation and end-to-end learning. The UFO dataset contains 1500 training samples and 120 test samples and can be used for salient object detection, superresolution reconstruction, and underwater image enhancement. Underwater images of this dataset were collected at different locations and under different water types, and significant foreground pixels were manually marked. The EUVP dataset consists of 20K underwater images with 12K paired instances and 8K unpaired instances. The EUVP dataset was shot with a variety of different cameras, covering different visibility and sea areas. Some of the images were taken from publicly available Youtube videos to accommodate the wide range of natural variations in the data. The RUIE dataset consists of three subsets: UIQS, UCCS and UHTS. UIQS is divided into five quality levels, each containing 726 underwater images, totaling 3,630 images. The UCCS subset consists of 300 underwater images, including 100 blue distorted, 100 green distorted, and 100 blue-green distorted images.

The UHTS subset consists of 300 underwater images of different species of Marine life for evaluation of classification and detection methods. And Li et al. [40] used attenuation coefficients to characterize different water scenes and constructed 10 different types of image datasets using the RGB-D NYU-v2 indoor dataset [57].

IV. QUALITY EVALUATION METRICS

Image quality evaluation is an important index to measure image quality. According to the situation with or without reference images, quantitative evaluation can be divided into reference image quality evaluation and non-reference image quality evaluation.

4.1 Reference Evaluation Metrics

For reference evaluation metrics, the widely employed full-reference image quality evaluation methods include Peak Signal to Noise Ratio (PSNR) [58] and Structural Similarity (SSIM) [59].

Images processed through neural networks or other technical approaches differ from their original counterparts, and the PSNR value is commonly utilized to assess whether the quality of the processed image satisfies the desired standards. For an image of size $m \times n$, the calculation process of PSNR can be expressed as follows:

$$PSNR(x,y) = 10 \times \log_{10} \frac{255^{2}}{E_{MS}} \#(1)$$

$$E_{MS}(x,y) = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{n=0}^{n-1} ||x(i,j) - y(i,j)||^{2} \#(2)$$

Where x represents the processed image, y represents the clear reference image, and E_{MS} is the mean square error. Higher PSNR values indicate a lesser degree of image distortion.

SSIM evaluates the similarity between two images based on three components: luminance similarity, contrast similarity, and structural similarity. The SSIM calculation formula is presented as follows:

$$SSIM(x,y) = \left[l(x,y)^{\alpha} \times c(x,y)^{\beta} \times s(x,y)^{\gamma} \right] \#(3)$$

$$l(x,y) = \frac{2\mu_{x}\mu_{y} + c_{1}}{\mu_{x}^{2} + \mu_{y}^{2} + c_{1}} \#(4)$$

$$c(x,y) = \frac{2\sigma_{x}\sigma_{y} + c_{2}}{\sigma_{x}^{2}\sigma_{y}^{2} + c_{2}} \#(5)$$

$$s(x,y) = \frac{\sigma_{xy} + c_{3}}{\sigma_{x}\sigma_{y} + c_{3}} \#(6)$$

here, x represents the processed image, whereas y represents the clear reference image. The mean values of x and y are denoted by μ_x and μ_x ,

ISSN: 2456-5628

respectively, and their variances are denoted by σ_x^2 and σ_y^2 . Constants c_i (i=1,2,3) are introduced to prevent the denominator from being zero. The value of SSIM ranges from 0 to 1, with higher values indicating greater similarity between the two images. To simplify the calculation, the common choice is to set $\alpha = \beta = \gamma = 1$ and $c_2 = 2c_3$. The simplified SSIM formula can expressed as:

$$SSIM(x,y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)} \#(7)$$

4.2 Non-reference Evaluation Metrics

For evaluating image quality without reference images, two non-reference metrics can be employed: Underwater Color Image Quality Evaluation (UCIQE) [60] and Underwater Image Quality Measurement (UIQM) [61].

UCIQE evaluates an image's chroma, saturation, and contrast, with chroma quantifying color bias, contrast measuring local contrast of targets, and the mean saturation indicating color purity. The calculation formula for UCIQE can be defined as:

 $UCIQE = c_1 \times \sigma_c + c_2 \times c_l + c_3 \times \mu_s \#(8)$ where c_1 , c_2 , c_3 are weight coefficients, and σ_c , c_l , and μ_s represent the standard deviation of chromaticity, luminance contrast, and mean saturation, respectively. Higher UCIQE values indicate better image quality.

UIQM comprises three components: Underwater Image Colourfulness Measure (UICM), Underwater Image Sharpness Measure (UISM), and Underwater Image Contrast Measure (UIConM).The calculation formula for UIQM as follows:

 $U ext{ } Q ext{ } M = c_1 imes U_{ICM} + c_2 imes U_{ISM} + c_3 imes U_{IConM} \# (9)$ where c_1 , c_2 , and c_3 are the weight coefficients for UICM, UISM, and UIConM, respectively. Higher UIQM values indicate better image quality.

V. CONCLUSION

At present, the mainstream underwater image enhancement technology is aimed at a single water scene. Although there are relevant technologies that can cope with multiple types of degraded underwater images, it is still difficult to take into account the effectiveness, universality and robustness of the method. Therefore, it is of great significance to study the diversity of underwater image degradation and achieve a universal and robust underwater image enhancement method for different degradation types. At the same time, research on the multi-frequency of

underwater image information, design underwater image sharpening methods that can generate high-quality enhanced results, and then promote the application of underwater image sharpening technology in underwater survey, marine biological research and underwater rescue.

REFERENCES

- [1] Guo, J.C.; Li, C.Y.; Guo, C.L.; Chen, S.J. Research progress of underwater image enhancement and restoration methods. J. Image Graph. 2017, 22, 273–287.
- [2] Hu K, Weng C, Zhang Y, et al. An overview of underwater vision enhancement: From traditional methods to recent deep learning. Journal of Marine Science and Engineering 10.2 (2022): 241.
- [3] Hummel, Robert. "Image enhancement by histogram transformation." Comput. Graph. Image Process. 1977, 6, 184–195.
- [4] Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; Romeny, B.t.H.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368.
- [5] Iqbal, K.; Odetayo, M.; James, A.; Salam, R.A.; Talib, A.Z.H. Enhancing the low quality images using unsupervised colour correction method. IEEE Int. Conf. Syst. Man Cybern. 2010, 1703–1709.
- [6] Ghani, A.S.A.; Isa, N.A.M. Enhancement of low quality underwater image through integrated global and local contrast correction. Appl. Soft Comput. 2015, 37, 332–344.
- [7] Ghani, A.S.A.; Isa, N.A.M. Automatic system for improving underwater image contrast and color through recursive adaptive histogram modification. Comput. Electron. Agric. 2017, 141, 181–195.
- [8] Li, C.-Y.; Guo, J.-C.; Cong, R.-M.; Pang, Y.-W.; Wang, B. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 2016, 99, 1.

- [9] Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393.
- [10] Ancuti, C.; Ancuti, C.O.; De Vleeschouwer, C.; Garcia, R.; Bovik, A.C. Multi-scale underwater descattering. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 4202–4207.
- [11] Pan, P.-w.; Yuan, F.; Cheng, E. Underwater image de-scattering and enhancing using dehazenet and hwd. J. Mar. Sci. Technol. 2018, 26, 6.
- [12] Chang, H.-H. Single underwater image restoration based on adaptive transmission fusion. IEEE Access 2020, 8, 38650–38662.
- [13] Gao, F.; Wang.Underwater image enhancement based on local contrast correction and multi-scale fusion. J. Mar. Sci. Eng. 2021, 9, 225.
- [14] Song, H.; Wang, R. Underwater image enhancement based on multi-scale fusion and global stretching of dual-model. Mathematics 2021, 9, 595.
- [15] Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 1997, 6, 451–462.
- [16] Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976.
- [17] Joshi, K.R.; Kamathe, R.S. Quantification of retinex in enhancement of weather degraded images. In Proceedings of the 2008 International Conference on Audio, Language and Image Processing, Shanghai, China, 7–9 July 2008; pp. 1229–1233.
- [18] Fu, X.; Zhuang, P.; Huang, Y.; Liao, Y.; Zhang, X.P.; Ding, X. A retinex-based enhancing approach for single underwater image. In Proceedings of the 2014 IEEE

- International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4572–4576.
- [19] Bianco, G.; Muzzupappa, M.; Bruno, F.; Garcia, R.; Neumann, L. A new color correction method for underwater imaging. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 25.
- [20] Mercado, M.A.; Ishii, K.; Ahn, J. Deep-sea image enhancement using multi-scale retinex with reverse color loss for autonomous underwater vehicles. In Proceedings of the OCEANS 2017-Anchorage, Anchorage, AK, USA, 18–21 September 2017; pp. 1–6.
- [21] Zhang, S.; Wang, T.; Dong, J.; Yu, H. Underwater image enhancement via extended multi-scale retinex. Neurocomputing 2017, 245,1–9.
- [22] Zhang, W.; Dong, L.; Pan, X.; Zhou, J.; Qin, L.; Xu, W. Single image defogging based on multi-channel convolutional msrcr. IEEE Access 2019, 7, 72492–72504.
- [23] Tang, C.; von Lukas, U.F.; Vahl, M.; Wang, S.; Wang, Y.; Tan, M. Efficient underwater image and video enhancement based on retinex. Signal Image Video Process. 2019, 13, 1011–1018.
- [24] Schechner, Y.Y.; Karpel, N. Clear underwater vision. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004; p. I.
- [25] Namer, E.; Shwartz, S.; Schechner, Y.Y. Skyless polarimetric calibration and visibility enhancement. Opt. Express 2009, 17, 472–493
- [26] Chen, Z.; Wang, H.; Shen, J.; Li, X.; Xu, L. Region-specialized underwater image restoration in inhomogeneous optical environments. Optik 2014, 125, 2090–2098.
- [27] Han, P.; Liu, F.; Yang, K.; Ma, J.; Li, J.; Shao, X. Active underwater descattering and image recovery. Appl. Opt. 2017, 56, 6631–6638.
- [28] Sánchez-Ferreira, C.; Coelho, L.S.; Ayala,

- H.V.; Farias, M.C.; Llanos, C.H. Bio-inspired optimization algorithms for real underwater image restoration. Signal Process. Image Commun. 2019, 77, 49–65.
- [29] He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341– 2353.
- [30] Chao, L.; Wang, M. Removal of water scattering. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; p. V2-35.
- [31] Yang, H.-Y.; Chen, P.-Y.; Huang, C.-C.; Zhuang, Y.-Z.; Shiau, Y.-H. Low complexity underwater image enhancement based on dark channel prior. In Proceedings of the 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, Shenzhen, China, 16–18
- [32] Chiang, J.Y.; Chen, Y.-C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2011, 21, 1756–1769.
- [33] Drews, P.L.; Nascimento, E.R.; Botelho, S.S.; Campos, M.F.M. Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appl. 2016, 36, 24–35.
- [34] Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 2015, 26, 2015.
- [35] Li, C.; Quo, J.; Pang, Y.; Chen, S.; Wang, J. Single underwater image restoration by bluegreen channels dehazing and red channel correction. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2.
- [36] Meng, H.; Yan, Y.; Cai, C.; Qiao, R.; Wang, F. A hybrid algorithm for underwater image restoration based on color correction and image sharpening. Multimed. Syst. 2020, 1–11.
- [37] Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D.

- Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198.
- [38] Shin, Y.-S.; Cho, Y.; Pandey, G.; Kim, A. Estimation of ambient light and transmission map with common convolutional architecture. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–7.
- [39] Ding, X.; Wang, Y.; Zhang, J.; Fu, X. Underwater image dehaze using scene depth estimation with adaptive color correction. In Proceedings of the OCEANS 2017-Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–5.
- [40] Li, C.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit. 2020, 98, 107038.
- [41] Uplavikar, Pritish M., Zhenyu Wu, and Zhangyang Wang. All-in-One Underwater Image Enhancement Using Domain-Adversarial Learning. In CVPR workshops, pp. 2019. 1-8.
- [42] Naik, A.; Swarnakar, A.; Mittal, K. Shallow-uwnet: Compressed model for underwater image enhancement (student abstract). In Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, CA, USA, 2–9 February 2021; pp. 15853–15854.
- [43] Yang, X.; Li, H.; Chen, R. Underwater image enhancement with image colorfulness measure. Signal Process. Image Commun. 2021, 95, 116225.
- [44] Chen, X.; Yu, J.; Kong, S.; Wu, Z.; Fang, X.; Wen, L. Towards Quality Advancement of Underwater Machine Vision with Generative Adversarial Networks. Onikle. Available online: https://onikle.com/articles/30092 (accessed on 16 January 2018).
- [45] Anwar, S.; Li, C.; Porikli, F. Deep Underwater Image Enhancement. Computer Vision and Pattern Recognition. Available online: https://arxiv.org/abs/1807.03528 (accessed on 10 July 2018).

- [46] Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. Watergan: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 2017, 3, 387–394.
- [47] Fabbri, C.; Islam, M.J.; Sattar, J. Enhancing underwater imagery using generative adversarial networks. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7159–7165.
- [48] Guo, Y.; Li, H.; Zhuang, P. Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Ocean. Eng. 2019, 45, 862–870.
- [49] Liu, X.; Gao, Z.; Chen, B.M. Mlfcgan: Multilevel feature fusion-based conditional gan for underwater image color correction. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1488– 1492.
- [50] Yang, M.; Hu, K.; Du, Y.; Wei, Z.; Sheng, Z.; Hu, J. Underwater image enhancement based on conditional generative adversarial network. Signal Process. Image Commun. 2020, 81, 115723.
- [51] Lu, J.; Li, N.; Zhang, S.; Yu, Z.; Zheng, H.; Zheng, B. Multi-scale adversarial network for underwater image restoration. Opt. Laser Technol. 2019, 110, 105–113.
- [52] Li, H.; Zhuang, P. Dewaternet: A fusion adversarial real underwater image enhancement network. Signal Process. Image Commun. 2021, 95, 116248.
- [53] Park, J.; Han, D.; Ko, H. Adaptive weighted multi-discriminator cyclegan for underwater image enhancement. J. Mar. Sci. Eng. 2019, 7, 200.

- [54] Islam, M. J., Luo, P., & Sattar, J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. Proceedings of the Robotics: Science and Systems (RSS), 2020.
- [55] Islam, M. J, et al. Fast underwater image enhancement for improved visual perception. IEEE Robotics and Automation Letters, vol. 5, no. 2 pp. 3227–3234, 2020.
- [56] Liu R, Fan X, Zhu M, Hou M, Luo Z. Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light. IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no .12, pp. 4861-4875, 2020.
- [57] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor segmentation and support inference from rgbd images. in Proc. of Eur. Conf. Comput. Vis. (ECCV), pp. 746-760, 2016
- [58] Korhonen, Jari, and Junyong You. Peak signal-to-noise ratio revisited: Is simple beautiful?. Proceedings of the 2012 Fourth International Workshop on Quality of Multimedia Experience. pp.38–38, 2012.
- [59] Wang, Zhou, et al. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, vol. 13, no. 4 pp. 600–612, 2004.
- [60] Yang, Miao, and Arcot Sowmya. An underwater color image quality evaluation metric. IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 6062–6071, 2015.
- [61] Panetta, Karen, Chen Gao, and Sos Agaian. Human-visual-systeminspired underwater image quality measures. IEEE Journal of Oceanic Engineering 41.3, vol. 41, no. 3, pp. 541–551, 2015.