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ABSTRACT: As one of the important carriers for understanding the underwater environment, underwater
images have important research significance in the fields of marine ecology, marine resources and marine
environment monitoring. However, the degradation inherent in underwater images, such as color distortion due
to light absorption and scattering, severely hampers their effectiveness in downstream applications, including
object detection, recognition and tracking. Therefore, underwater image enhancement methods are crucial for
restoring image quality and enhancing visual information. This paper aims to introduce several diverse
enhancement approaches, including image-based, physics-model-based, and deep-learning-based. Additionally,
we discuss relevant underwater image datasets and quality evaluation metrics. By doing so, we aim to provide
insights into the landscape of underwater image enhancement research and its implications for advancing

underwater vision systems.
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l. INTRODUCTION

Recently, underwater imaging technology
has gained widespread attention in various fields,
including marine biology research, underwater
archaeology, ocean exploration, and underwater
robotics, due to its wide range of applications [1].
However, capturing high-quality images in
underwater environments is inherently challenging
due to the unique optical properties of water, such as
absorption, scattering, and attenuation of light. This
degradation can result in color distortion, low
contrast, and blurred details, seriously hindering
subsequent image analysis and interpretation tasks.
To address these challenges, numerous underwater
image enhancement techniques have been developed
to restore and improve the visual quality of
underwater images. These methods aim to mitigate
the effects of light attenuation, enhance contrast,
correct color distortion and sharpen image details,
ultimately promoting more accurate and reliable
image-based analysis and decision-making in
underwater applications.
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This paper aims to provide a comprehensive
overview of the current representative underwater
image enhancement methods. We categorize these
methods into three approaches: image-based
methods, physical model-based methods, and deep
learning-based methods [2]. The classification
strategy is shown in the Fig. 1. Image-based methods
enhance contrast, sharpen edges, and correct colors
by manipulating pixel values without explicitly
modeling the underwater imaging process. Physical
model-based methods utilize mathematical models to
describe the light propagation and attenuation
processes in water, enabling the reversal of these
effects to restore image quality. In recent years, deep
learning-based methods have shown remarkable
performance in underwater image enhancement by
learning complex mappings from  degraded
underwater images to their enhanced counterparts.
Furthermore, underwater image datasets
play a crucial role in the development and evaluation
of underwater image enhancement methods. This
paper presents several publicly available underwater
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image datasets that have been widely utilized by the
research community. These datasets encompass a
wide range of underwater environments and imaging
conditions, providing a valuable resource for training
and testing underwater image enhancement
algorithms.

enhancement methods.

2.1 Image-based Methods

The image-based method does not depend
on the underwater imaging model, and improves the
brightness and contrast of the underwater image by

Fig. 1The classification strategy of underwater image enhancement methods.

Evaluating the quality of enhanced
underwater images is a crucial step in assessing the
performance of different enhancement methods. This
paper reviews several underwater image quality
assessment metrics, including fully referenced and
non-referenced metrics, which have been proposed to
quantitatively assess the visual quality and fidelity of
enhanced underwater images. These metrics enable
an objective comparison of different enhancement
techniques and contribute to the development of
more efficient algorithms.

In  summary, this paper presents a
comprehensive review of underwater image
enhancement methods, underwater image datasets,
and underwater image quality assessment metrics. By
synthesizing information from these three areas, this
paper aims to provide researchers and practitioners
with a comprehensive understanding of the current
state of underwater imaging research and identify
potential directions for future work. This review
hopes to contribute to the development of underwater
imaging technology and its applications in various
fields.

UNDERWATER IMAGE ENHANCEMENT
METHODS
In this section, we provide an overview of

various representative underwater image
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directly adjusting the pixel value of the image.
Image-based  underwater image enhancement
methods can be subdivided into the following
methods: histogram-based method, fusion-based
method and retinex-based method.

2.1.1 Histogram-based Methods

The histogram equalization-based algorithm
[3] is an effective and straightforward method for
image enhancement. This method's principle
involves recalculating the gray world map of the
image and transforming the histogram from a narrow
single-peak distribution to a uniform distribution,
ensuring that the image has an approximately equal
number of pixels across the gray level range, thereby
enhancing the image's brightness and contrast [4].

In the early stages of underwater image
enhancement technology research, researchers
attempted to directly apply the aerial histogram
equalization method to process underwater images.
However, the enhancement effect was poor due to
the neglect of the distinct differences between
underwater and airborne imaging. Igbal et al. [5]
proposed an unsupervised color correction method in
the field of underwater image enhancement, which is
based on color correction and adaptive histogram
stretching. This algorithm employs a color balancing
method and adjusts the histogram distribution of the
red and blue channels in the RGB color space,
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effectively removing color bias and correcting
saturation and brightness in underwater images.
Ahmad et al. [6][7] successively proposed an
adaptive histogram enhancement method using
Rayleigh stretching limit contrast enhancement and a
recursive histogram correction method. The former
method improves image contrast, enhances detail,
and reduces over-enhancement, over-saturation, and
noise introduction. However, if the color proportion
in the image is low, the image may become distorted.
The latter method modifies the image color in the
HSV color space, enhancing the contrast of the
background region, but also increasing the
algorithm's complexity. Li et al. [8] proposed a prior
histogram  distribution  algorithm  based on
underwater image dehazing, which significantly
improved the brightness and contrast of underwater
images and greatly reduced the inference time. The
disadvantage is that the enhancement effect is not
significant when the degraded image has low
brightness. While this method is effective in
enhancing image quality, it can potentially
overstretch the gray levels, leading to excessive
enhancement and the introduction of artifacts.
Consequently, this may result in a loss of detail or an
unnatural appearance in the enhanced image.

2.1.2 Fusion-based Methods

The fusion-based method complements the
information of different images by fusing multiple
images of the same scene, so that the degraded image
has richer and more accurate information.

Ancuti et al.  [9][10] used the
complementary information between multiple images
to optimize the acquisition process and the definition
of weight information of fused images, which
improved the exposure of enhanced images and
retained the edge information of images. However,
this  algorithm  cannot  perform  selective
compensation. Pan et al. [11] obtained atomization
image and color correction image of the original
image through dehazing network and white balance,
used the fusion strategy of Laplace pyramid for
fusion, and used hybrid wavelet to achieve denoising
and edge enhancement. The disadvantage of this
algorithm is that it can not significantly improve the
contrast of the image. Chang et al. [12] proposed an
adaptive fusion algorithm for underwater image
restoration. Based on optical characteristics and
image processing knowledge, the algorithm extracts
the background light and transmission images of
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underwater images, and performs adaptive weighted
fusion according to their respective salient images.
The algorithm can effectively restore the clarity and
color information of the image, but the blurring still
exists in the background area and the contrast is
insufficient. Gao et al. [13] proposed an underwater
image enhancement method based on Local Contrast
Correct and multi-scale fusion. The multi-scale
fusion method effectively addresses the issues of low
contrast and color distortion in underwater images by
fusing the locally contrast-corrected image with the
sharpened image. Song et al. [14] introduced a
method called Multiscale Fusion and Global
Stretching of Dual-model (MFGS). MFGS utilizes
white balance to correct color bias and incorporates
contrast and spatial cues into a significance weight
sparse strategy for achieving high-quality fusion.
Furthermore, MFGS globally stretches all channels
in the RGB color space to enhance color contrast.
However, this algorithm exhibits limitations in
enhancing color richness and reducing inference
time.

These fusion methods generally mitigate
noise, thereby enhancing the overall contrast and
refining edge and detail clarity. However, these
methods necessitate the acquisition of multiple
images and the fusion of weights.

2.1.3 Retinex-based Methods

The underwater image enhancement method
based on Retinex simulates the human eye's adaptive
light adjustment mechanism by disentangling color
and brightness information from the image, and
subsequently enhancing image quality through the
adjustment of their relative proportions. Retinex
theory, rooted in color constancy, mitigates the
impact of irradiation components on object color,
thereby eliminating degradation under uneven
illumination and revealing the true scene depiction.

Jobson et al. [15][16] introduced the
Multiscale Retinex enhancement algorithm to
enhance image quality. Joshi et al. [17] applied
Retinex theory to underwater images for enhancing
degraded image, albeit with limited improvement in
visual effect despite advances. Fu et al. [18]
presented a Retinex-based variant that utilizes an
alternate direction optimization strategy to address
reflectivity —and  illuminance  issues,  while
incorporating  color  correction to  mitigate
underexposure and blur. However, the complexity of
this algorithm is heightened by the iterative
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optimization process. Bianco et al. [19] pioneered the
use of color space for color correction in underwater
images. The method manipulates the color
component, adjusting its distribution around white
balance and histogram cutoffs, and enhances image
contrast by stretching the brightness component.
Mercado et al. [20] introduced a deep-sea dark image
enhancement technique based on MSRCR (Multi-
Scale Retinex with Color Restoration), aimed at
mitigating color loss and addressing the issue of
uneven illumination. Zhang et al. [21] developed an
underwater image enhancement algorithm based on
extended multi-scale Retinex, incorporating both
bilateral and trilateral filtering to mitigate the halos.
The disadvantage of trilateral filtering is its lengthy
processing time and limited contrast enhancement
effect. Zhang et al. [22] presented an MSRCR-based
single image dehazing method utilizing multi-
channel convolution, capable of enhancing the global
contrast and detail information of underwater images
while mitigating noise interference. However, this
method occasionally fails to prevent the occurrence
of overexposure. Tang et al. [23] developed an
underwater video image enhancement method. This
method initially achieves even pixel distribution
through preprocessing, followed by the application of
multi-scale Retinex with intensity channels to the
preprocessed images, further enhancing contrast and
color. However, the algorithm's real-time
performance is constrained by its intricate steps.

In conclusion, Retinex-based underwater
image enhancement techniques effectively enhance
the clarity and visibility of underwater images.
However, their design and calculation processes are
intricate, necessitating the integration of color

correction, detail enhancement, and histogram
equalization  methods for  optimal  image
enhancement.

2.2 Physical Model-based Methods

Different from image-based methods,
physical model-based underwater image
enhancement methods mimic the light propagation
process underwater by constructing an optical model
specific to underwater imaging. Subsequent to
establishing the underwater imaging model, this
approach utilizes prior knowledge and additional
methodologies to approximate the model's
parameters and reverse the degradation process,
thereby vyielding a clearer underwater image.
Currently, the physical model-based methods include
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polarization-based methods and prior knowledge-
based methods.
2.2.1 Polarization-based Methods

The polarization-based method exploits the
polarization attributes of scattered light to discern
between scene light and scattered light, thereby
enhancing the underwater image through the
estimation of the scattered light's intensity and
transmission coefficient.

Schechner et al. [24] harnessed the
polarization of light scattering in water to restore the
visibility, contrast, and color fidelity of underwater
images. Nonetheless, in the case of images exhibiting
severe scattering, the enhancement outcomes may
suffer from blurriness. Based on independent
component analysis, Namer et al. [25] first
approximated the intensity and polarization level of
background light from polarization images. Then, the
depth map of the underwater image is derived to
facilitate the restoration of the degraded image. Chen
et al. [26] segmented the underwater image
according to whether it was an artificial illuminated
area, compensated the artificial illuminated area in
the image, eliminated the influence of artificial
lighting on the underwater image, and solved the
problem of uneven illumination. But this method
may result in overexposure. Han et al. [27]
considered the influence of backscattering in imaging
and mitigated its effect by altering the light source,
acquiring two orthogonally polarized images. This
method effectively preserves edge information.
Ferreira et al. [28] utilized particle swarm
optimization to estimate polarization parameters and
employed an unreferenced mass measure as the cost
function for image recovery, resulting in improved
visual quality. However, the parameter optimization
process increases the time complexity of the
algorithm.

In summary, while these methods enhance
underwater image quality, they require multiple
images of the same scene captured at different
polarization angles as prior information, thereby
restricting their applicability.

2.2.2 Prior knowledge-based Methods

The prior knowledge-based methods utilize
the existing knowledge of underwater environment
features to estimate the parameters of the underwater
image degradation model and invert the degradation
process to obtain a clear underwater image.

He et al. [29] introduced the Dark Channel
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Prior (DCP) technique, originally designed for
dehaze removal in images, which has gradually been
adapted for enhancing underwater image scenes. This
method employs the DCP theory to solve for the
transmitted image and atmospheric light value, while
utilizing the atmospheric scattering model to restore
the image. However, when Liu et al. [30] directly
applied the DCP method to underwater image
enhancement, the enhancement effect was minimal,
and even led to degradation. To address this, Yang et
al. [31] proposed a rapid underwater image
restoration method based on DCP, which utilized
median filtering to estimate the depth of field
information and introduced a color correction
method to enhance image contrast. Nevertheless, this
approach was unable to recover underwater images
with low brightness and color deviation. Chiang et al.
[32] overcame these limitations by proposing an
underwater image enhancement method that
combined wavelength compensation with DCP
dehazing. This method not only corrected image blur
and distortion caused by artificial light sources but
also improved image quality by compensating for the
varying attenuation characteristics of the RGB
channels. Drews et al. [33] introduced the
Underwater Dark Channel Prior (UDCP) method.
This method solely focuses on the blue and green
channels, resulting in a more precise underwater
transmission map compared to the DCP algorithm,
thereby enhancing the image recovery performance.
Galdran et al. [34] devised an automatic red channel
underwater image restoration method. This approach
utilizes the red channel prior and incorporates
saturation information to modulate the impact of
artificial light sources. Li et al. [35] presented a
method that combines red channel correction with
blue and green channel dehazing. This method
employs the gray world algorithm and adaptive
exposure images to adjust the red channel's color,
simultaneously addressing issues of overexposure
and underexposure areas, thereby enhancing
visibility and contrast. However, for underwater
images captured in uneven lighting conditions, the
quality of recovered images remains suboptimal.
Meng et al. [36] introduced an underwater image
enhancement technique that integrates color
correction with image sharpening. When the value of
red channel is approximates approaching the blue
channel, a color balance method is employed for
image restoration. Furthermore, the algorithm utilizes
the Maximum a Posteriori Probability (MAP)
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method to sharpen the image subsequent to color
correction. This algorithm enhances image visibility
while preserving foreground texture details, albeit at
the cost of introducing numerous parameters.

While these methods can effectively
enhance image quality, they rely heavily on
obtaining precise prior information. Obtaining this
information, however, poses significant challenges
and necessitates the estimation of prior knowledge
through the utilization of mathematical or statistical
models. Accurately estimating prior knowledge is
pivotal in achieving high-quality recovery of
underwater images.

2.3 Learning-based Methods

In recent years, deep learning has garnered
significant attention in the field of computer vision
owing to its robust feature learning capabilities.
Furthermore, deep learning-based underwater image
enhancement techniques have garnered the interest of
researchers in the field. The objective of deep
learning-based underwater image enhancement is to
learn the mapping between degraded and clear
underwater images, leveraging extensive training
data. Based on varying network architectures, it can
be categorized into two enhancement approaches:
Convolutional Neural Networks-based (CNN-based)
methods and Generative Adversarial Networks-based
(GAN-based) methods.

2.3.1 CNN-based Methods

CNN is a classical type of deep feed
forward artificial neural network, comprising
multiple convolutional layers designed to efficiently
extract feature representations, ranging from low-
level details to high-level semantic information,
enabling the processing of diverse computer vision
tasks.

Gai et al. [37] proposed DehazeNet, a deep
neural network that utilizes convolutional neural
networks to extract media-transmitted images and
employs an atmospheric scattering model to restore
degraded images, achieving end-to-end image de-
hazing. However, this network proves ineffective
when directly applied to underwater image
processing tasks. Shin et al. [38] introduced a
universal convolution structure to recover underwater
images by learning both the transmission pattern and
the background light of underwater images. Although
the model exhibits effective performance in
removing haze, it suffers from  color
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overcompensation. Ding et al. [39] addressed
distorted images using an adaptive color correction
algorithm. This algorithm employs a CNN network
to estimate the depth map of the image after color
correction and converts it directly to the transmission
map for restoration. Nevertheless, the adaptability
and real-time performance of the algorithm require
improvement. Li et al. [40] constructed a large-scale
underwater image enhancement dataset
encompassing various water types based on the
physical model of images and the optical
characteristics of underwater scenes. Bseides, they
proposed UWCNN, an underwater image
enhancement model based on underwater scene
priori. UWCNN trains multiple networks on different
degradation types of underwater image datasets and
employs multiple loss functions for joint
optimization to reconstruct clear underwater images
while preserving the original structure and texture.
Uplavikar et al. [41] employed encoder-decoder
network to reconstruct clear underwater images and
utilized an independent CNN as a water classifier to
determine the water types. To address the diversity of
underwater image distribution, they incorporated
adversarial training, forcing the model to learn
agnostic features of the water types from degraded
underwater images. This method enhanced the
generalization performance of the model by reducing
the interference of domain distribution diversity,
albeit with a challenging optimization process. Naik
et al. [42] introduced a shallow neural network
comprising a fully connected convolutional network
and three densely connected convolutional blocks.
This network effectively avoided overfitting through
skip connections and exhibited well generalization
performance and real-time efficiency. However, the
enhancement effect requires further improvement.
Yang et al. [43] proposed integrating RGB and HSV
color spaces into a CNN network. RGB pixel block
operations facilitated denoising and chromatic
aberration correction, while HSV enabled adjustment
of color, brightness, and saturation in underwater
images.

Overall, CNN-based methods should
consider the underwater imaging process during
design to enhance interpretability and better meet
practical application needs.

2.3.2 GAN-based Methods
GAN is a neural network structure
consisting of generator and discriminator. The
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objective of the generator is to learn to produce high-
quality underwater images, while the discriminator
identifies differences between generated and real
underwater images. Through iterative training, the
generator progressively enhances its ability to
generate underwater images, approximating the
effect of real underwater images as closely as
possible.

Due to the difficulty in obtaining pairs of
underwater images, relevant researchers [44][45]
employed GAN networks to generate a substantial
amount of underwater images, addressing the issue
of limited underwater image enhancement datasets.
Li et al. [46] proposed an underwater image
generation adversarial network that utilizes aerial and
synthetic underwater images as training data for real-
time color correction of a single underwater image.
Fabbri et al. [47] proposed an underwater image
enhancement model based on a generative
adversarial network, which restores underwater
images by incorporating absolute error loss and
gradient loss. Guo et al. [48] proposed a multi-scale
dense generative adversarial network for underwater
image enhancement, utilizing multi-scale, dense
cascade, and residual learning operations to enhance
model performance. Liu et al. [49] proposed a multi-
scale fusion adversarial network that fuses local and
global features to obtain more discriminative feature
expressions, facilitating more efficient network
learning. Yang et al. [50] proposed an underwater
image enhancement method with dual discriminators
that captures local and global semantic information,
constraining the generator to produce real and natural
results. Lu et al. [51] embedded prior knowledge into
the cycle generation adversarial network and used
depth information to guide multi-scale calculation,
achieving good performance in contrast enhancement
and color correction. Li et al. [52] proposed a fusion
adversarial network  for underwater image
enhancement, utilizing multiple target loss functions
to correct color bias and spectral normalization to
enhance image quality. Park et al. [53] added a pair
of additional discriminators based on the cyclic
adversarial generation network, and introduced an
adaptive weighting method to limit the loss of the
two discriminators.

In general, GAN-based methods mainly rely
on high quality training data, reasonable network
structure and effective training methods.
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1. UNDERWATER IMAGE ENHANCEMENT
DATASETS

Underwater image enhancement method
needs a lot of underwater image data to train or
optimize. In the process of training and testing, the
underwater image dataset adopted by the model
should not only consider the diversity of underwater
scenes and the richness of content, but also consider
whether the amount of underwater image data is
sufficient. We introduce a variety of underwater
image datasets, including the paried real world
datasets UIEB [49], UFO [54], and EUVP [55], and
unparied real world dataset RUIE [56], as well as the
synthetic and paried underwater image dataset [40].

These datasets all collect a large number of
real or synthetic underwater images from different
domains and different imaging equipment, covering
multiple types of degradation and rich image content.
Most of them also provide corresponding reference
images or images that have been processed by
specialized  underwater  image  enhancement
algorithms in order to evaluate and compare the
effects of different underwater image enhancement
methods. UIEB contains 890 original underwater
images and corresponding high-quality reference
images, as well as 60 challenging underwater images.
This dataset contains multiple underwater scenes, a
wide range of image content and a different range of
colors, and also provides high-quality reference
images that can be used to guide image quality
evaluation and end-to-end learning. The UFO dataset
contains 1500 training samples and 120 test samples
and can be used for salient object detection, super-
resolution reconstruction, and underwater image
enhancement. Underwater images of this dataset
were collected at different locations and under
different water types, and significant foreground
pixels were manually marked. The EUVP dataset
consists of 20K underwater images with 12K paired
instances and 8K unpaired instances. The EUVP
dataset was shot with a variety of different cameras,
covering different visibility and sea areas. Some of
the images were taken from publicly available
Youtube videos to accommodate the wide range of
natural variations in the data. The RUIE dataset
consists of three subsets: UIQS, UCCS and UHTS.
UIQS is divided into five quality levels, each
containing 726 underwater images, totaling 3,630
images. The UCCS subset consists of 300
underwater images, including 100 blue distorted, 100
green distorted, and 100 blue-green distorted images.
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The UHTS subset consists of 300 underwater images
of different species of Marine life for evaluation of
classification and detection methods. And Li et al.
[40] used attenuation coefficients to characterize
different water scenes and constructed 10 different
types of image datasets using the RGB-D NYU-v2
indoor dataset [57].

V. QUALITY EVALUATION METRICS

Image quality evaluation is an important
index to measure image quality. According to the
situation with or without reference images,
quantitative evaluation can be divided into reference
image quality evaluation and non-reference image
quality evaluation.

4.1 Reference Evaluation Metrics

For reference evaluation metrics, the widely
employed full-reference image quality evaluation
methods include Peak Signal to Noise Ratio (PSNR)
[58] and Structural Similarity (SSIM) [59].

Images processed through neural networks
or other technical approaches differ from their
original counterparts, and the PSNR value is
commonly utilized to assess whether the quality of
the processed image satisfies the desired standards.
For an image of size m x n, the calculation process

of PSNR can be expressed as follows:
2

255
PSNR(x,y) = 10 X log;( —#(1)
Eys

1 m-—1 n—-1
Eus(y) = 7= D k@) = yG DI #2)

Where x represents the processed image, y represents
the clear reference image, and E,s is the mean
square error. Higher PSNR values indicate a lesser
degree of image distortion.

SSIM evaluates the similarity between two images
based on three components: luminance similarity,
contrast similarity, and structural similarity. The
SSIM calculation formula is presented as follows:

SSIM(x,y) = [L0x,y)% x c(x, y)# x s(x, )" |#(3)

201y + ¢
1, y) = ———5——#(4)
Y 1i +pp + o
20,0, + ¢,
,y) = ————=#(5
) = 5 oa g, #O)
Oy, +C3
y) =—2——#(6
(0 y) = g2 #(O)

here, x represents the processed image,
whereas y represents the clear reference image. The
mean values of x and y are denoted by u, andu,,
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respectively, and their variances are denoted
by ¢% and o3 .Constants ¢; (i=1,2,3) are
introduced to prevent the denominator from being
zero.The value of SSIM ranges from 0 to 1, with
higher values indicating greater similarity between
the two images.To simplify the calculation, the
common choice isto seta=B=y=1andc, =
2c5. The simplified SSIM formula can expressed as:
(Zﬂxﬂy + Cl)(Zaxy + Cz)

#(7)

(g +u5 + c)(0f +0f +¢3)

SSIM(x,y) =

4.2 Non-reference Evaluation Metrics

For evaluating image quality without
reference images, two non-reference metrics can be
employed: Underwater Color Image Quality
Evaluation (UCIQE) [60] and Underwater Image
Quality Measurement (UIQM) [61].

UCIQE evaluates an image's chroma,
saturation, and contrast, with chroma quantifying
color bias, contrast measuring local contrast of
targets, and the mean saturation indicating color
purity. The calculation formula for UCIQE can be
defined as:

UCIQE =c¢; X 0.+ ¢, X ¢+ c3 X u#(8)
where ¢4, c,, c5 are weight coefficients, and o, c;,
and pu, represent the standard deviation of
chromaticity, luminance contrast, and mean
saturation,  respectively.Higher UCIQE  values
indicate better image quality.

UIQM  comprises three components:
Underwater Image Colourfulness Measure (UICM),
Underwater Image Sharpness Measure (UISM), and
Underwater Image Contrast Measure (UIConM).The
calculation formula for UIQM as follows:

U @M =cy XUpgy +cy X Uiy + 3 X Upgon #(9)
where ¢4, ¢,, andc; are the weight coefficients for
UICM, UISM, and UlConM, respectively. Higher
UIQM values indicate better image quality.

V. CONCLUSION

At present, the mainstream underwater
image enhancement technology is aimed at a single
water scene. Although there are relevant technologies
that can cope with multiple types of degraded
underwater images, it is still difficult to take into
account the effectiveness, universality and robustness
of the method. Therefore, it is of great significance to
study the diversity of underwater image degradation
and achieve a universal and robust underwater image
enhancement method for different degradation types.
At the same time, research on the multi-frequency of
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underwater image information, design underwater
image sharpening methods that can generate high-
quality enhanced results, and then promote the
application of underwater image sharpening
technology in underwater survey, marine biological
research and underwater rescue.
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