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ABSTRACT : Traffic prediction is a very important research content in the field of intelligent transportation. 

However, due to the complex spatio-temporal correlation in traffic data, traffic prediction still faces severe 

challenges. To better capture the spatio-temporal correlation of traffic data, a deep learning-based traffic 

volume prediction model called Spatio-Temporal Convolutional Transformer (ST-CT) was presented in this 

paper. The model consists of three main parts, including: the local information enhancement module, the 

modified graph convolutional neural network (M-GCN), and the gated recursive unit (GRU). The local 

information enhancement module is composed of the convolutional neural network (CNN), the transposed 

convolutional neural network and the transformer encoder layer. In the ST-CT, the local information 

enhancement module is employed to capture the global and local correlation of the traffic data, the M-GCN is 

employed to capture spatial correlation via learning the complex topology structure of the transport network, 

the GRU is employed to capture the temporal correlation via learning the time change of traffic volume. We 

tested the predictive performance of ST-CT on two real datasets Los-loop and SZ-taxi. The test result indicates 

that the prediction performance of ST-CT is better than the comparison models. 

KEYWORDS -Traffic prediction, Spatio-temporal correlation, GCN, Transformer 

 

I.INTRODUCTION 

Today modern cities are moving in the 

direction of smart cities. The rapid rise of the 

population and the acceleration of urbanization have 

put a lot of strain on city traffic management. Traffic 

problems such as traffic congestion and traffic safety 

are becoming increasingly severe [1]. Accurate traffic 

prediction can not only help people know the road 

conditions ahead of time, plan their own travel, and 

improve travel efficiency; it can also provide 

administrators with a scientific basis for allocating 

road resources ahead of time, alleviating traffic 

congestion, and ensuring public safety [2]. 

Fortunately, with the development of information 

technology and transportation industry, more and 

more sensors are placed and a large number of traffic 

data are collected through sensors. However, accurate 

traffic prediction is difficult due to the nonlinearity, 

spatial-temporal correlation of traffic data and 

complexity of traffic road network. The spatial 

correlation of traffic data is mainly reflected in the 

generally situation, adjacent roads are highly 

correlated, while distant roads tend to be weakly 

correlated. As shown in Fig. 1, the spatially adjacent 

points 2, 5, and 4 were considered more important in 

predicting the traffic volume of node 1, while distant 

points such as 3, 6, 7, 8, and 9 were considered 

weakly correlated. The temporal correlation of traffic 

data is mainly reflected in the periodicity and trend of 

traffic data. Fig. 2 (a) depicts changes in traffic over a 

week and we can see cyclical changes in traffic over 

a week. The change of traffic volume is closely 

related to time. As shown in Fig. 2 (b), the daily 

traffic volume changes with time. 

 
Fig. 1 Spatial correlation 

People have conducted extensive research to 

address the aforementioned issues. In the early days, 

statistical methods including ARIMA and its variants 

[3, 4], Kalman filter [5] were popular. However, the 

traffic data is nonlinear and dynamic, contradicting 
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these approaches' linear stationary assumption, 

resulting in poor predicting results. Traditional 

machine learning methods, such as support vector 

regression [6, 7], K-nearest Neighbor model [8] and 

Bayes model [9], can model nonlinearity in traffic 

data and extract more complex data correlations. 

However, the ability of these models to predict 

outcomes is mainly determined by the features of 

artificial design and it's hard to learn the spatial-

temporal correlation of data. With the rapid 

development of deep learning, deep learning 

technology has been used to mine spatial-temporal 

correlation for traffic prediction tasks. Recurrent 

neural network (RNN) [10] and its variants LSTM 

[11] or GRU [12] are often used to model temporal 

correlation. To better capture the spatial correlation 

of data, some people used CNN [13] and graph 

convolutional network (GCN) [14] to predict traffic 

data. At the same time, in order to better obtain the 

global correlation of the data, many people began to 

use the attention mechanism to capture the global 

correlation of the data [15]. 

 
Fig. 2 Temporal correlation 

Despite the fact that these methods 

improved the prediction effect, they had flaws in 

studying spatio-temporal correlation. These models 

only used the topological relations of the traffic 

network to capture spatial correlation, so the captured 

spatial correlation was incomplete. These models, on 

the other hand, only considered the data's global 

correlation and ignored the data's local correlation. In 

order to solve the above problems, a modified traffic 

prediction method, Spatio-Temporal Convolutional 

Transformer (ST-CT) is proposed for traffic 

prediction tasks. Our contribution is threefold: 

1. A modified graph neural network (M-

GCN) with a position attention mechanism was 

designed to solve the problem that traditional graph 

neural networks only rely on the given topological 

graphs to capture spatial correlation of data. By using 

a position attention mechanism, M-GCN can better 

capture spatial correlation of data by capturing the 

traffic volume information on adjacent roads. 

2. The local information enhancement 

module is composed of the CNN and the Transformer 

encoder layer, and was designed to simultaneously 

capture the global and local correlations of data. 

3. We use two real-world traffic datasets to 

evaluate our approach. The results show that 

compared with all baseline methods, the prediction 

error of this method is reduced and the correlation 

coefficient is improved, which demonstrates the 

effectiveness of our method. 

The rest of the paper is organized as 

follows: Sect. 2 summarizes the related work of 

traffic volume prediction. Sect. 3 describes our 

method in detail. In Sect. 4, we evaluate the 

predictive performance of ST-CT using real-world 

traffic data sets. In Sect. 5 is the conclusion of this 

paper. 

 

II.RELATED WORK 

Deep learning has the powerful ability to 

theoretically approach arbitrary complex functions 

and can model more complex patterns in various 

traffic tasks. In addition, due to the improvement of 

computing capacity (such as GPU) and a large 

amount of traffic data, deep learning-based 

technology has been widely applied in various traffic 

applications and achieved the better prediction 

results. For example, to predict traffic speed, Ma et 

al. [16] proposed a CNN-based deep learning method 

that captured the spatial correlation of data by traffic 

volumes as images. To gain a better understanding of 

data's spatio-temporal correlation, a series of models 

integrating CNN and LSTM [17-20] were 

constructed to predict short-term traffic flow. Shi et 

al. [21] proposed a Convolutional LSTM 

(ConvLSTM) and used it to build a trainable end-to-

end model of the short-term rainfall forecasting 

problem. Lv et al. [22] used CNN to extract the 

spatial correlation of adjacent roads and used LSTM 

to extract features from a time series perspective. 

CNN captured spatial correlation by splitting traffic 

data into grids one by one. Although these methods 

achieved good results, they mainly modeled the 

Euclidean correlation between regions, but many 

transportation networks are graphically structured in 

nature, such as road networks and subway networks. 
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The non-Euclidean correlation is a better fit for 

describing the road system. The spatial features 

learned on CNN are not optimal for representing 

graph-based traffic networks [23]. In other words, 

these methods are only suitable for data based on grid 

maps and not for data based on multiple sensors. In 

terms of spatial correlation, these methods are 

inadequate. 

GCN extends the convolution operation to 

more general graph structure data, which is more 

suitable for representing the traffic network structure 

and extracting the spatial correlation of data. GNN 

[24] was one of the latest technologies for processing 

non-Euclidean structured data and was widely used 

in traffic volume forecast tasks [23, 25, 26]. The 

spatial correlation between roads was captured using 

GNN in these methods. However, traditional GNN 

only uses the traffic network’s topological relations 

to learn spatial information, resulting in the central 

node uniformly learning the information of adjacent 

nodes, but the influence of adjacent nodes on the 

central node is not always equal. As a result, the 

information of adjacent nodes should not be equally 

learned by the central node.  People have also 

conducted extensive research in order to address the 

shortcomings of traditional GNN and better capture 

spatial correlation. Wu [27] introduced the adaptive 

adjacency matrix as a constraint to graph 

convolutional to automatically discover unknown 

graph structures from data for spatial correlation. 

Guo [28] learned the optimization map by data-

driven method in the training stage, and revealed the 

potential relationship between sections of traffic data 

to predict traffic flow. Bai [29] decomposed the 

shared parameter part of traditional graph 

convolutional by matrix, so as to obtain node-specific 

parameters and capture node-specific modes. These 

methods improved on traditional GNN, which can 

better learn spatial information and improve 

prediction accuracy but they ignored the correlation 

of the data itself. In recent years, attention 

mechanisms have been widely used in various tasks 

such as natural language processing, image 

captioning and speech recognition. The attention 

mechanism's goal is to select from all input the 

information that is critical to the task at hand. Wang 

et al. [30] used a learning position attention 

mechanism in GCN and used transformer to learn 

global correlation. However, they did not consider 

complementary information, only learned the global 

correlation and ignored the internal relationship of 

data, so the local correlation was not extracted and 

lacking global and local mutual relations. 

Based on this background, this study 

proposes a modified deep learning network method, 

which can extract complex temporal and spatial 

features from traffic data, and learn the global 

correlation and local correlation of the data itself. 

 

III.METHODOLOGY 

3.1 Problem Definition 

In this study, the goal of traffic prediction is 

to predict traffic information in a future period of 

time according to historical traffic information on the 

road. In our approach, traffic information is a general 

concept, which can be traffic speed, traffic flow or 

traffic density. Without losing the versatility, taking 

traffic speed as an example, traffic information is 

extracted in the experimental section.      

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1: (Traffic networks) We use an 

unweighted graph 𝐺 = (𝑉, 𝐸)  to describe the 

topology of the road network, and treat each road as a 

node,where 𝑉 is a set of road nodes, 𝑉 =

{𝑣1, 𝑣2, ⋯ 𝑣𝑁}, 𝑁is the number of nodes, and 𝐸 is the 

set of edges. The adjacency matrix 𝐴  is used to 

represent the connections between roads, 𝐴 ∈ 𝑅𝑁×𝑁, 

the adjacency matrix contains only elements 0 and 1. 

If there is no connection between two roads, the 

element is 0. If there is a connection between two 

roads, it is represented by 1. 

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 2 : (Traffic speed forecasting) 

Given the traffic network 𝐺 = (𝑉, 𝐸)  and the 

historical traffic information, 𝑋𝑡 is used to represent 

the traffic volume at time 𝑡, we aim to build a model 

𝑓, which can take a sequence of length 𝑛 as input and 

predict the traffic information for the next 𝑇  time 

steps. As shown in Eq. (1): 

[𝑋𝑡+1, ⋯𝑋𝑡+𝑇] = 𝑓(𝐺; (𝑋𝑡−𝑛−1, ⋯𝑋𝑡−1, 𝑋𝑡)) (1) 

 

3.2 Overview 

The model is composed of three parts: the 

local information enhancement module, the M-GCN, 

and the GRU. The local information enhancement 

module is used to simultaneously learn the global 

correlation and local correlation of data. It consists of 

the CNN, the transposed convolutional neural 

network and the transformer encoder layer, which 

solves the problem that the transformer encoder layer 

cannot capture local correlation. In this model, we 

have multiple local information enhancement units 

arranged in series in order to obtain information at 

different local locations. M-GCN is used to capture 

spatial correlation of data. It is not like the traditional 



 

 

International Journal of Modern Research in Engineering and Technology (IJMRET) 

www.ijmret.org Volume 9 Issue 3 ǁ March 2024. 
 

w w w . i j m r e t . o r g      I S S N :  2 4 5 6 - 5 6 2 8  

 

 

Page 4 

GCN to capture spatial information by learning given 

topology graphs, but by the location attention 

mechanism to capture the spatial information of each 

node. GRU is used to capture time correlation. As 

shown in Fig. 3, we first use historical time series 

data of length 𝑛  as input and then input the time 

series data into the local information enhancement 

module to capture the global and local correlation of 

data. At the same time, in order to avoid the 

vanishing gradients problem, residual connections 

[31] are used to connect the outputs. Secondly, the 

obtained time series with global and local correlation 

features are input into the M-GCN to capture the 

spatial correlation of data. Then the time series are 

input into the GRU to capture the temporal 

correlation of data. Finally, get the result through the 

full connection layer. 

 
Fig. 3 The proposed model framework 

 

3.3 Global and Local Correlation 

Each local information enhancement module 

consists of a CNN with a convolution kernel size of 

𝐾, a transposed convolutional neural network with a 

convolution kernel size of 𝐾 , and a transformer 

encoder layer. The transformer encoder layer consists 

of a multi-head attention layer and a feed forward 

neural network layer. Our local information 

enhancement module framework is shown in Fig. 4. 

First, the data is inputted into the CNN with a 

convolution kernel of width𝐾. The CNN is searched 

for 𝐾 neighbors of the input elements, padding is set 

to 0 in this experiment, making the length of each 

sequence become shorter 𝐾 − 1 . The data is 

processed by CNN goes into the multiple attention 

layer [32]. The multiple attention layer is based on 

the dot product attention mechanism. In the multi-

attention layer, the elements in sequence position 𝑖 

are related to all elements in the sequence. The inputs 

of the attention function consist of queries, keys with 

dimension 𝑑𝑘 and values with dimension 𝑑𝑣 of all the 

positions in the sequence. We compute the dot 

products of a given query with all keys, divide each 

by √𝑑𝑘 and then apply a softmax function to obtain 

the attention scores for each position. These attention 

scores are then used as weights. In practice, the 

attention for the queries of all positions 

simultaneously is computed as shown in Eq. (2): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
𝑉) (2) 

where 𝑄,𝐾 ∈ 𝑅𝑇×𝑑𝑘  and 𝑉 ∈ 𝑅𝑇×𝑑𝑣  denote the 

queries, keys, and values for all the nodes. 

Specifically, the 𝑖 -th row of 𝑄  denotes the query 

corresponding to the position 𝑖  in the sequence. 

Multi-head attention allows the model to 

simultaneously attend to information from various 

representation subspaces at various locations. When 

using a single attention head, averaging prevents this. 

Thus, multi-headed attention works better than it. 

The equation for multiple attention is shown in Eq. 

(3): 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 , ⋯ ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂(3) 

ℎ is the number of heads. The ℎ𝑒𝑎𝑑𝑖  meanings are 

shown in Eq. (4): 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (4) 

𝑑𝑚𝑜𝑑𝑒𝑙 is our input dimension, 𝑊𝑖
𝑄 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 

𝑊𝑖
𝐾 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝑉 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 and 𝑊𝑂 ∈

𝑅ℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 .However, the multi-head attention layer 

ignores relative positions in the sequence because it 

treats different positions equally in calculating the 

attentional function. To ensure the multi-head 

attention layer know the relative position of position 𝑖 

in the entire sequence, the position encoding 𝑒𝑡  for 

each position is adopted. Where 𝑒𝑡  is defined as 

shown in Eq. (5): 

𝑒𝑡 =

{
 
 

 
 sin (

𝑡

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) , 𝑖𝑓  𝑡 = 0,2,4⋯

cos (
𝑡

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)  

After the multi-head attention layer, the 

output is passed to the feed forward neural network 

layer. Then the data is inputted into the transposed 

convolutional neural network with a convolution 

kernel of width 𝐾 . Similarly, the transposed 

convolutional neural network is also searched for 𝐾 

adjacent elements of the input elements without 

padding, making the length of each sequence increase 

by 𝐾 − 1. As shown in Fig. 4, after the transposed 
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convolutional neural network, there is a layer 

normalization [33]. This makes up a complete local 

information enhancement module. 

In order to be able to capture information 

from different local units, multiple local information 

enhancement modules are set up. The size of the 

convolution kernel for each local information 

enhancement module is different. With different sizes 

of convolution kernels, the obtained receptive fields 

are also different, so that different local information 

can be captured. In general, the larger the kernel, the 

larger the field of perception, the more information 

can be learned and the better the global features can 

be characterised. However, too large a convolution 

kernel leads to an increase in parameters, which is 

not conducive to increasing the depth of the model, 

and also increases the computational power required. 

In the case of considering the data dimension, five 

local information enhancement modules are set and 

set the convolution kernel size to 9, 7, 5, 3, and 1 

respectively in this experiment. At the same time, in 

order to better enable the model to learn the 

information from the data and prevent the gradient 

problem caused by too deep layers, the residual 

connection is set at the end of the module. 

 
Fig. 4 The local information enhancement module 

framework 

 

3.4 Modeling the Spatial Correlation 

Obtaining complex spatial correlations is a 

key problem in traffic prediction. In order to capture 

spatial correlation, we adopt the GCN to transform 

and disseminate information in the data. Specifically, 

given input information on 𝑋𝑖𝑛 ∈ 𝑅
𝑁×𝑑𝑖𝑛  on the 

network, the output 𝑋𝑜𝑢𝑡 ∈ 𝑅
𝑁×𝑑𝑜𝑢𝑡  can be generated 

as shown in Eq. (6): 

𝑋𝑜𝑢𝑡 = 𝜎 (𝐷̃−
1

2𝐴̃𝐷̃−
1

2𝑋𝑖𝑛𝑊)    (6) 

where 𝜎  is a nonlinear activation function and 

𝑅𝐸𝐿𝑈(∙)  is used in this experiment, 𝑊  is the 

parameter for learning, 𝐼𝑁  is the 𝑁 -dimensional 

identity matrix, 𝐴̃ = 𝐴 + 𝐼𝑁  is the refined adjacency 

matrix and 𝐷̃  is the refined degree matrix, 𝐷̃𝑖𝑖 =

∑ 𝐴̃𝑖𝑗𝑗 . In Eq. (6), the operation entirely based on the 

road connection information of topology graph, but 

in most cases, the spatial correlation is not fully 

captured. 

Meanwhile, in terms of traffic prediction, 

the closer the two roads are to each other, the more 

likely the traffic conditions on the two roads will 

affect each other. So, we try to capture the spatial 

correlation for each node by learning location 

representations. 

Specifically, for each node 𝑣𝑖 , we try to 

learn the potential location representation 𝑝𝑖  by using 

attention mechanism. Then, the pairwise relationship 

between any road nodes is modeled as shown in Eq. 

(7): 

𝑅[𝑖, 𝑗] =
exp (∅ (𝑆𝑐𝑜𝑟𝑒(𝑝𝑖 , 𝑝𝑗)))

∑ 𝑒𝑥𝑝𝑁
𝑘=1 (∅(𝑆𝑐𝑜𝑟𝑒(𝑝𝑖 , 𝑝𝑘)))

 (7) 

the 𝑆𝑐𝑜𝑟𝑒()  is a relation score function modeled 

using the dot product, as shown in Eq. (8): 

𝑆𝑐𝑜𝑟𝑒(𝑝𝑖 , 𝑝𝑗) = 𝑝𝑖
𝑇𝑝𝑗 (8) 

We can then perform a GCN operation on 

the newly learned relational matrix as shown in Eq. 

(9): 

𝑋𝑜𝑢𝑡 = 𝜎 (𝐷̃𝑅
−
1

2𝑅̃𝐷̃𝑅
−
1

2𝑋𝑖𝑛𝑊
(𝑙)) (9) 

where 𝑅̃ = 𝑅 + 𝐼𝑁 and 𝐷̃𝑅 is the degree matrix for 𝑅̃. 

Through the above method, the 

shortcomings of traditional GCN which is highly 

dependent on topological graph and the information 

of adjacent nodes is equally learned by central nodes 

can be conquered. Meanwhile it can excavate deeper 

hidden relationships between nodes. 

 

3.5 Modeling the Temporal Correlation 

Obtaining temporal correlation is another 

key problem in traffic forecasting. The most widely 

used method to capture temporal correlation of data 

is the RNN. However, due to defects such as gradient 

disappearance and gradient explosion, the effect of 

long-term prediction is poor with traditional RNN. 

The LSTM model and the GRU model are variants of 

the RNN by using gated mechanism to maintain 

long-term information. So good results have been 

obtained in long-term prediction. The basic principles 

of the LSTM and the GRU are substantially the same. 

However, due to the complex structure of LSTM, the 
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training time is longer, while the GRU model has a 

relatively simple structure, fewer parameters and 

faster training ability. Therefore, we chose the GRU 

model to obtain temporal correlation from traffic 

data. 

The GRU not only captures the current 

traffic information, but also retains the changing 

trend of historical traffic information and has the 

ability to better capture temporal correlation. The 

GRU obtains the traffic information of time 𝑡  by 

taking the hidden state of time 𝑡 − 1 and the current 

traffic information as input. As shown in Fig. 5, ℎ𝑡−1 

indicates the hidden state at 𝑡 − 1, 𝑟𝑡 is the reset gate, 

used to control the degree of ignoring the state 

information of the previous moment; 𝑢𝑡 is the update 

gate, used to control the state information of the last 

moment into the current state; 𝑐𝑡  is the storage 

content of 𝑡  time storage; ℎ𝑡  is the output state at 

time 𝑡. 

 
Fig. 5 The architecture of the GRU model 

The specific calculation process is as shown 

in Eq. (10)-(13): 

𝑢𝑡 = 𝜎(𝑊𝑢[𝑋𝑜𝑢𝑡 , ℎ𝑡−1] + 𝑏𝑢) (10) 

𝑟𝑡 = 𝜎(𝑊𝑟[𝑋𝑜𝑢𝑡 , ℎ𝑡−1] + 𝑏𝑟) (11) 

𝑐𝑡 = 𝜎(𝑊𝑐[𝑋𝑜𝑢𝑡 , (𝑟𝑡 × ℎ𝑡−1)] + 𝑏𝑐) (12) 

ℎ𝑡 = 𝑢𝑡 × ℎ𝑡−1 + (1 − 𝑢𝑡) × 𝑐𝑡  (13) 

𝑋𝑜𝑢𝑡represents the output of M-GCN and is defined 

in Eq. (9). 𝑊 and 𝑏 represent the weights and biases 

in the training process. 

The ST-CT model is capable of handling 

complex spatio-temporal data. The local information 

enhancement module improves the capture of local 

spatio-temporal information while capturing the 

global correlation by using a combination of CNN 

and transformer encoder layer. The M-GCN captures 

spatial information better by learning location 

representations. The GRU is used to capture the 

dynamic changes of traffic volume on the road in 

order to obtain temporal correlation. 

 

IV.EXPERIMENTS 

4.1 Data Description 

We evaluated the effect of the model on two 

real datasets, the SZ-taxi dataset and the Los-loop 

dataset. The both datasets are related to traffic speed. 

(1) SZ-taxi. The dataset includes taxi 

operation data in Shenzhen from January 1 to January 

31, 2015. 156 main roads in Luohu District were 

selected as the research area. The experimental data 

mainly consists of two parts. One is the 156 by 156 

adjacency matrix, which describes the spatial 

relationships between roads. Each row represents one 

path, and the values in the matrix represent the 

connectivity between the paths. The other is the 

feature matrix, which describes the speed over time 

on each road. Each column represents the speed of 

traffic on the road at a different time. The speed of 

traffic on each road was aggregated every 15 minutes. 

(2) Los-loop. This data set was collected in 

real time by a loop detector on freeways in Los 

Angeles County. We selected 207 sensors and their 

traffic speeds from March 1 to March 7, 2012. The 

speed of traffic was aggregated every five minutes. 

The data consists of an adjacency matrix and an 

feature matrix. The adjacency matrix is calculated 

according to the distance between sensors in the 

traffic network. 

In the experiment, the input data was 

normalized to the interval [0,1]. In addition, 80% of 

the data is used as a training set and the remaining 20% 

as a test set. We predicted traffic speeds for the next 

15 minutes, 30 minutes, 45 minutes, and 60 minutes. 

 

4.2 Evaluation Metrics 

We use four metrics to evaluate the 

prediction performance of model: 

(1) Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑀𝑁
∑∑(𝑦𝑖

𝑗
− 𝑦̂𝑖

𝑗
)
2

𝑁

𝑖=1

𝑀

𝑗=1

(14) 

(2) Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑀𝑁
∑∑|(𝑦𝑖

𝑗
− 𝑦̂𝑖

𝑗
)|

𝑁

𝑖=1

𝑀

𝑗=1

(15) 

(3) Coefficient of Determination (𝑅2): 

𝑅2 = 1 −
∑ ∑ (𝑦𝑖

𝑗
− 𝑦̂𝑖

𝑗
)
2

𝑁
𝑖=1

𝑀
𝑗=1

∑ ∑ (𝑦𝑖
𝑗
− 𝑌̅)

2
𝑁
𝑖=1

𝑀
𝑗=1

(16) 

(4) Explained V ariance Score (𝑣𝑎𝑟): 

𝑣𝑎𝑟 = 1 −
𝑉𝑎𝑟{𝑌 − 𝑌̂}

𝑉𝑎𝑟{𝑌}
 (17) 

where 𝑦𝑖
𝑗
 and 𝑦̂𝑖

𝑗
 represent the real traffic information 

and predicted one of the 𝑗th time sample in the 𝑖th 
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road. 𝑀  is the number of time samples; 𝑁  is the 

number of roads; 𝑌 and 𝑌̂  represent the set of 𝑦𝑖
𝑗
 and 

𝑦̂𝑖
𝑗
  respectively, and 𝑌̅ is the average of𝑌. 

Specifically, RMSE and MAE are used to 

measure prediction errors: the smaller the value, the 

better the prediction. 𝑅2  and 𝑣𝑎𝑟  calculate the 

correlation coefficient, which measures the ability of 

predictions to represent actual data: the larger the 

value, the better the prediction. 

 

4.3 Choosing Model Parameters 

In this section, the parameters of the model 

were introduced. 

The hyperparameters of the model mainly 

include learning rate, batch size and the number of 

local information enhancement module. In the 

experiment, we manually adjusted and set the 

learning rate to 0.003, the batch size to 64, the 

number of local information enhancement modules 

are 5. 

The training data set (accounting for 80% of 

the total data) is taken as the input in the training 

process, and the rest of the data is taken as the input 

in the testing process. The model was trained using 

the ADAM optimizer. 

 

 

 

4.4 Baseline Methods 

To verify the validity of this model, it was 

compared with some traditional and representative 

methods. 

(1) ARIMA [4], which conducts parameter 

model fitting on observed time series to predict future 

traffic data. 

(2) Support Vector Regression model (SVR) 

[34], which uses historical data to train the model in 

order to determine the relationship between input and 

output and then predicts future traffic data based on 

the trained model. The kernel we used in this model 

is a linear kernel. 

(3) Graph Convolutional Network model 

(GCN) [14], the model is trained using historical data 

and traffic topology maps to learn the spatial 

information of the data to predict future traffic data. 

(4) Gated Recurrent Unit model (GRU) [12], 

input historical data into the model, and the model 

captures the temporal correlation of the data to make 

predictions on the data. 

(5) T-GCN [23], combines GCN and GRU 

to carry out traffic prediction. 

(6) NA-DGRU [35], extracts spatial features 

from the neighborhood space of the road by using the 

neighborhood aggregation method. 

 

4.5 Experimental Results 
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Table 1. The prediction results on SZ-taxi and Los-loop datasets 

Dat

a 
Models 

15 min 30 min 45 min 60 min 

RMSE MAE 𝑅2 𝑣𝑎𝑟 
RMS

E 
MAE 𝑅2 𝑣𝑎𝑟 RMSE MAE 𝑅2 𝑣𝑎𝑟 RMSE MAE 𝑅2 𝑣𝑎𝑟 

SZ-

taxi 

ARIM

A 
7.2406 

4.982

4 
* 

0.003

5 

6.789

9 

4.676

5 
* 

0.008

1 
6.7852 

4.673

4 
* 

0.008

7 
6.7708 

4.665

5 
* 

0.011

1 

SVR 4.1455 
2.623

3 

0.842

3 

0.842

4 

4.162

8 

2.687

5 

0.841

0 

0.841

3 
4.1885 

2.753

9 

0.839

1 

0.839

7 
4.2156 

2.775

1 

0.837

0 

0.837

9 

GCN 5.6596 
4.236

7 

0.665

4 

0.665

5 

5.691

8 

4.264

7 

0.661

6 

0.661

7 
5.7142 

4.284

4 

0.658

9 

0.659

0 
5.7361 

4.303

4 

0.655

4 

0.655

4 

GRU 3.9994 
2.595

5 

0.832

9 

0.832

9 

4.094

2 

2.690

6 

0.842

9 

0.845

0 
4.1534 

2.774

3 

0.819

8 

0.819

9 
4.0747 

2.771

2 

0.826

6 

0.826

7 

T-GCN 3.9265 
2.711

7 

0.854

1 

0.854

1 

3.966

3 

2.741

0 

0.845

6 

0.845

7 
3.9859 

2.761

2 

0.844

1 

0.844

1 
4.0048 

2.788

9 

0.842

2 

0.842

3 

NA-

DGRU 
4.0587 

2.738

7 
* * 

4.068

3 

2.728

0 
* * 4.0777 

2.739

3 
* * 4.0851 

2.748

7 
* * 

ST-CT 3.9612 
2.594

7 

0.856

1 

0.856

2 

3.965

1 

2.631

9 

0.855

8 

0.855

8 
3.9768 

2.620

0 

0.855

0 

0.855

1 
3.9965 

2.641

0 

0.853

6 

0.853

6 

Los

-

loo

p 

ARIM

A 

10.043

9 

7.683

2 
* * 

9.345

0 

7.689

1 
* * 

10.050

8 

7.692

4 
* * 

10.053

8 

7.695

2 
* * 

SVR 6.0084 
3.728

5 

0.812

3 

0.814

6 

6.958

8 

3.724

8 

0.749

2 

0.752

3 
7.7504 

4.128

8 

0.689

9 

0.694

7 
8.4388 

4.503

6 

0.633

6 

0.559

3 

GCN 7.7922 
5.352

5 

0.684

3 

0.684

4 

8.335

3 

5.611

8 

0.640

2 

0.640

4 
8.8036 

5.953

4 

0.599

9 

0.600

1 
9.2657 

6.289

2 

0.558

3 

0.559

3 

GRU 5.2182 
3.060

2 

0.857

6 

0.857

7 

6.280

2 

3.650

5 

0.795

7 

0.795

8 
7.0343 

4.091

5 

0.744

6 

0.745

1 
7.6621 

4.518

6 

0.698

0 

0.698

4 

T-GCN 5.1264 
3.180

2 

0.863

4 

0.863

4 

6.059

8 

3.746

6 

0.809

8 

0.810

0 
6.7065 

4.115

8 

0.767

9 

0.768

4 
7.2677 

4.602

1 

0.728

3 

0.729

0 

NA-

DGRU 
5.1348 

3.028

1 
* * 

6.135

8 

3.669

2 
* * 6.7604 

4.056

7 
* * 7.2776 

4.425

6 
* * 

ST-CT 4.9997 
2.706

8 

0.870

0 

0.870

5 

5.982

1 

3.097

9 

0.814

6 

0.815

2 
6.6636 

3.389

7 

0.770

9 

0.771

9 
7.2038 

3.661

4 

0.735

2 

0.735

9 
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(1) High Prediction Precision. 

Table 1 shows the performance of the model 

and other baseline methods on the 15-minute, 30-

minute, 45-minute, and 60-minute prediction tasks on 

the SZ-taxi and Los-loop datasets. * indicates that 

these values are small and can be ignored, or the 

evaluation metrics that are not calculated in the 

baseline. From Table 1 we can see that the neural 

network-based methods (e.g., ST-CT and GRU) 

generally have better prediction precision than other 

baselines, and the prediction results of traditional 

time series analysis methods and machine learning 

methods are often unsatisfactory. For example, in the 

prediction of Los-loop data set, for the 15-minute 

traffic prediction task, the RMSE errors and MAE 

errors of the ST-CT model are reduced by 

approximately 50.22% and 64.76% compared with 

the ARIMA model. The RMSE errors and MAE 

errors of the ST-CT model are reduced by 

approximately 16.78% and 27.40% compared with 

the SVR model. This is because traditional time 

series analysis methods have difficulty in learning the 

non-linearity of traffic data, while machine learning 

methods also have difficulty in achieving good 

results with large data volumes. Meanwhile these 

models cannot capture spatial-temporal correlations. 

Therefore, these methods have limited capability 

compared to deep learning methods. Moreover, 

ARIMA gains by averaging the errors of different 

sections. Traffic data is dynamic. The data of some 

sections might greatly fluctuate to increase the final 

error. So, the ARIMA prediction effect is the worst. 

(2) More accurately spatial-temporal 

forecasting ability. 

Table 1 demonstrates that the spatial-

temporal correlation-based methods (T-GCN) have 

better forecasting results than single-temporal or 

single-spatial (GRU, GCN) based methods. This is 

because single-temporal or single-spatial (GRU, 

GCN) methods can either only learn the spatial 

information of the data or only learn the temporal 

information of the data. But T-GCN learns the spatial 

information of the data as well as the temporal 

information of the data, so the results are better than 

single-temporal or single-spatial (GRU, GCN) 

methods. Our model obtains global and local 

correlation of data on the basis of capturing spatial-

temporal correlation, and gets better results. For 

example, in the prediction of Los-loop data set, for 

the 15-minute traffic prediction task, the RMSE 

errors and MAE errors of the ST-CT model are 

reduced by approximately 38.29% and 49.43% 

compared with the GCN model. The RMSE errors 

and MAE errors of the ST-CT model are reduced by 

approximately 4.18% and 11.55% compared with the 

GRU model. The RMSE errors and MAE errors of 

the ST-CT model are reduced by approximately 2.47% 

and 14.88% compared with the T-GCN model. The 

RMSE errors and MAE errors of the ST-CT model 

are reduced by approximately 2.63% and 10.61% 

compared with the NA-DGRU model. Results based 

on SZ-taxi are similar to those based on Los-loop. 

Our proposed framework now achieves the best 

performance in almost all evaluation metrics on both 

datasets. In other words, after learning the global and 

local correlation of the data, our model can better 

capture the spatial topology characteristics of an 

urban road network as well as the temporal variation 

characteristics of the traffic state, while 

outperforming T-GCN at various prediction levels. 

Therefore, our model has more accurate space-time 

prediction ability. 

(3) Long-Term Prediction Capability. 

In all the prediction range, ST-CT has the 

best prediction effect. Fig. 6 shows the changes of 

MAE and 𝑣𝑎𝑟 in different prediction horizons. It can 

be seen from Fig. 6 that the change trend of the 

prediction results of the model is small and has 

certain stability. It shows that our method is not 

sensitive to the prediction level. Therefore, our model 

can be used not only for short-term prediction, but 

also for long-term prediction. 

 
Fig. 6 Long-term prediction ability 

The ST-CT model consistently yielded 

better results regardless of the prediction range. The 

ST-CT model can capture and analyze the spatial and 

temporal correlation of road traffic information and 

capture the global and local correlation of traffic 

speed information, and predict the changing trend of 

road traffic information. In addition, the model helps 

us to determine the start or end of peak periods by 

predicting the actual speed of traffic. This helps us to 

alleviate traffic congestion and other traffic problems. 

 

4.6 Ablation Studies 

In order to quantitatively verify the validity 

of the model design, ablation experiments for the 

local information enhancement module is conducted. 
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ST-C is the local information enhancement module to 

remove transformer encoder layer, ST-T is the local 

information enhancement module to remove the 

CNN and transpose convolutional neural network, 

the results are shown in Table 2: 

 

Table 2. Ablation experiment results 

T 
Met

ric 

SZ-taxi Los-loop 

ST-

C 

ST-

T 

ST-

CT 

ST-

C 

ST-

T 

ST-

CT 

15

min 

RM

SE 

4.05

23 

4.03

64 

3.96

12 

5.14

30 

5.08

22 

4.99

97 

MA

E 

2.70

99 

2.63

91 

2.59

47 

2.77

43 

2.73

03 

2.70

68 

𝑅2 
0.84

93 

0.85

06 

0.85

61 

0.86

25 

0.86

58 

0.87

00 

𝑣𝑎𝑟 
0.84

86 

0.85

06 

0.85

62 

0.86

34 

0.86

65 

0.87

05 

30

min 

RM

SE 

4.06

98 

4.02

83 

3.96

51 

6.18

54 

6.12

58 

5.98

21 

MA

E 

2.73

81 

2.64

73 

2.63

19 

3.19

84 

3.15

19 

3.09

79 

𝑅2 
0.84

81 

0.85

14 

0.85

58 

0.80

19 

0.80

56 

0.81

46 

𝑣𝑎𝑟 
0.84

81 

0.85

26 

0.85

58 

0.80

30 

0.80

62 

0.81

52 

45

min 

RM

SE 

4.06

07 

4.01

03 

3.97

68 

6.96

09 

6.79

44 

6.66

36 

MA

E 

2.71

62 

2.63

01 

2.62

00 

3.57

36 

3.43

77 

3.38

97 

𝑅2 
0.84

88 

0.85

26 

0.85

50 

0.75

00 

0.76

19 

0.77

09 

𝑣𝑎𝑟 
0.84

88 

0.85

27 

0.85

51 

0.75

10 

0.76

32 

0.77

19 

60

min 

RM

SE 

4.06

71 

4.04

02 

3.99

65 

7.60

21 

7.45

70 

7.20

38 

MA

E 

2.72

64 

2.64

30 

2.64

10 

3.86

14 

3.73

65 

3.66

14 

𝑅2 
0.84

83 

0.85

03 

0.85

36 

0.70

30 

0.71

43 

0.73

52 

𝑣𝑎𝑟 
0.84

84 

0.85

04 

0.85

36 

0.70

45 

0.71

61 

0.73

59 

 

The comparison of the ablation experimental 

results of RMSE, MAE, 𝑅2 , 𝑣𝑎𝑟  for the dataset at 

prediction times of 15 min, 30 min, 45 min, and 60 

min. According to the experimental results, we can 

see that after removing the CNN and transposed 

convolutional neural network in the local information 

enhancement module, the MAE and RMSE have 

increased compared with ST-CT, and 𝑅2  and 𝑣𝑎𝑟 

have also decreased. After removing the transformer 

encoder layer in the local information enhancement 

module, the RMSE and MAE have also increased 

compared with ST-CT, and 𝑅2  and 𝑣𝑎𝑟  results 

decreased. We visualize the effect of the ablation 

experiment to make it more intuitive, as shown in 

Figs. 7-10. Based on the results of our ablation 

experiment, the effectiveness of our local information 

enhancement module can be demonstrated. 

 
Fig. 7 Results of ablation experiments: RMSE 

 
Fig. 8 Results of ablation experiments: MAE 

 
Fig. 9 Results of ablation experiments:𝑅2 

 
Fig. 10 Results of ablation experiments: 𝑣𝑎𝑟 

We also looked into the effect of the number 

of local information enhancement modules on the 

model. As shown in Table 3, the experimental results 

of 4 local information enhancement modules 

(convolution kernel are 7, 5, 3, 1, respectively) and 6 

local information enhancement modules (convolution 

kernel are 11, 9, 7, 5, 3, 1, respectively) were verified. 
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Table 3. The influence of the number of local 

information enhancement modules 

T 
Metr

ic 

SZ-taxi Los-loop 

𝑛=4 𝑛=5 𝑛=6 𝑛=4 𝑛=5 𝑛=6 

15mi

n 

RMS

E 

3.99

33 

3.96

12 

3.98

10 

5.06

54 

4.99

97 

5.04

37 

MA

E 

2.62

75 

2.59

47 

2.61

87 

2.72

43 

2.70

68 

2.73

43 

𝑅2 
0.85

38 

0.85

61 

0.85

47 

0.86

67 

0.87

00 

0.86

78 

𝑣𝑎𝑟 
0.85

38 

0.85

62 

0.85

47 

0.86

77 

0.87

05 

0.86

84 

30mi

n 

RMS

E 

3.97

69 

3.96

51 

3.97

52 

6.01

02 

5.98

21 

5.98

04 

MA

E 

2.63

41 

2.63

19 

2.63

73 

3.10

24 

3.09

79 

3.14

22 

𝑅2 
0.85

50 

0.85

58 

0.85

51 

0.81

29 

0.81

46 

0.81

08 

𝑣𝑎𝑟 
0.85

50 

0.85

58 

0.85

53 

0.81

37 

0.81

52 

0.811

6 

45mi

n 

RMS

E 

3.99

39 

3.97

68 

3.97

76 

6.84

94 

6.66

36 

6.59

09 

MA

E 

2.61

41 

2.62

00 

2.63

63 

3.50

43 

3.38

97 

3.42

82 

𝑅2 
0.85

37 

0.85

50 

0.85

47 

0.75

82 

0.77

09 

0.77

58 

𝑣𝑎𝑟 
0.85

37 

0.85

51 

0.85

51 

0.75

99 

0.77

19 

0.77

68 

60mi

n 

RMS

E 

4.00

60 

3.99

65 

4.00

50 

7.39

46 

7.20

38 

7.22

07 

MA

E 

2.64

19 

2.64

10 

2.63

84 

3.73

88 

3.66

14 

3.74

09 

𝑅2 
0.85

29 

0.85

36 

0.85

29 

0.71

89 

0.73

52 

0.73

22 

𝑣𝑎𝑟 
0.85

29 

0.85

36 

0.85

29 

0.72

04 

0.73

59 

0.73

40 

 

As shown in Table 3, 𝑛  represents the 

number of local information enhancement modules. 

The effect of 4 and 6 local information enhancement 

modules, respectively, in the SZ-taxi data set is not as 

good as the initial set of 5. Only three indicators are 

higher when the number of local information 

enhancement modules is 6 in the Los-loop data set 

than when the local information enhancement module 

is 5, because when the local information 

enhancement module is 4, less local information is 

learned than when the local information enhancement 

module is 5, so the effect is worse. Although more 

local information is learned when the local 

information enhancement module is set at 6, as the 

number of network layers deepens, some information 

is inevitably lost, resulting in a worse effect than 

when the local information enhancement module is 

set at 5. Experiments, on the other hand, show that 

the deeper the model layer, the better the effect is not 

always. 

 

V.CONCLUSION 

A deep learning-based modified traffic 

volume prediction model called ST-CT is proposed 

in the paper. By using this model, the spatial-

temporal correlation and the global and local 

correlation of the traffic data can be better captured 

simultaneously. Therefore, the traffic prediction 

performance of the model is improved. Specifically, 

the data is inputted into the local information 

enhancement unit, and the local information 

enhancement unit captures the global and local 

information of the data through the combination of 

CNN with different convolution kernels and attention 

mechanism. The M-GCN is used to capture the 

spatial correlation of traffic data by learning the 

location representations of each node. The GRU is 

used to capture the temporal correlation by using 

gated mechanisms. Finally, the ST-CT model is used 

to solve the problem of spatio-temporal traffic 

prediction. It is tested on two real traffic datasets, and 

compared with HA, ARIMA, SVR, GCN, GRU and 

T-GCN, the ST-CT model achieves better 

performance at different prediction levels, 

demonstrating its utility in traffic prediction. 
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