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ABSTRACT: The Digital Twin (DT) technology has evolved significantly since its inception during NASA’s 

Apollo program in the 1960s, becoming essential in the aerospace industry and beyond. This paper explores the 

historical development of DTs, transitioning from early "Physical Twins" to sophisticated virtual models driven 

by advancements in the Internet of Things (IoT), machine learning, and data analytics. In aerospace, DTs improve 

product lifecycle management, operational efficiency, and cost-effectiveness by enabling real-time monitoring, 

predictive maintenance, and high-fidelity simulations of aircraft and spacecraft systems. The study outlines the 

core components of DTs physical reality, virtual representation, and their interconnectedness and presents real-

world applications such as optimizing heavy fuel aircraft engines and tidal turbines. Despite advancements, 

challenges like data integration, sensor reliability, and real-time processing remain. Nonetheless, the continuous 

development of DT technologies promises enhanced performance, safety, and innovation across multiple 

industries. The paper concludes by emphasizing the transformative role of Digital Twins in the future of 

technology and industrial practices. 
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I. INTRODUCTION 

The concept of the Digital Twin (DT) has 

evolved significantly since its inception, with 

aerospace being one of the pioneering industries to 

adopt this technology. Originally conceived during 

NASA’s Apollo program in the 1960s, the DT has 

matured into a critical tool for real-time monitoring, 

optimization, and decision-making. The 

formalization of the DT concept came in 2002 

through Grieves’ work [1], which laid the 

foundation for its application in various sectors. 

In aerospace, Digital Twin technology 

plays a pivotal role in improving product lifecycle 

management, enhancing operational efficiency, and 

reducing costs. By creating accurate virtual replicas 

of physical systems, such as aircraft and spacecraft, 

DTs enable continuous monitoring and simulation, 

which allows engineers to predict performance, 

identify issues before they occur, and optimize 

maintenance schedules [2], [3]. This paper provides 

an overview of the state of the art of Digital Twin 

technology in aerospace, focusing on its evolution, 

core components, and cutting-edge applications that 

are driving innovation in the industry. 

II. HISTORICAL CONTEXT 

The concept of the Digital Twin (DT) has 

evolved significantly, starting with NASA's Apollo 

project in the 1960s. From early "Physical Twins" to 

advanced digital frameworks, DTs have transformed 

into essential tools for monitoring, optimization, and 

innovation across industries. 

2.1 Beginnings (1960 – 2000) 

During NASA's Apollo project in the late 

1960s, the concept of a 'Twin' began to take shape in 

the aerospace industry. The idea involved having 

two capsules: one destined for launch and another 

remaining on Earth. Both would contain identical 

components, and any alteration made to the launch-

bound capsule would be mirrored in the one on the 

ground. This approach allowed engineers to test 

A primer to digital twins in the aeronautical and aerospace 

industry 
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solutions on the Earth-bound capsule if issues arose 

during the mission before instructing the astronauts.  

Known as the "Physical Twin," this 

concept is often dismissed due to its exorbitant costs 

and the added difficulty of replicating the real 

object's conditions in a laboratory setting. 

Frequently, this proves impossible, rendering the 

conclusions drawn from the Physical Twin non-

extrapolable. 

2.2 Formalization (2000 – 2010) 

The concept was first formalized by Grieves in a 

2002 conference on Product Lifecycle Management 

(PLM) [4], where he presented a slide titled 

Conceptual Ideal for PLM. This model comprised a 

real space, a virtual space, and the data link 

connecting them. 

At that time, the enabling technologies for 

Digital Twins were insufficiently developed, as 

noted in [5]. Consequently, while the concept 

evolved, technological limitations such as hardware 

virtualization, the Internet of Things (IoT), machine 

learning, and computational capacity made 

implementation exceedingly difficult. 

In 2005, Grieves referred to this concept as 

"Mirrored Spaces" in his paper [6]. It wasn't until 

2006 that he began using the term "Digital Twin" in 

[7], although he also referred to it as a "virtual 

doppelganger." 

2.3 Consolidation (2010 – 2014) 

By 2010, the concept gained significant 

traction, especially in the aerospace industry, 

appearing as a key technology in NASA's roadmap. 

John Vickers decisively coined the term "Digital 

Twin" during this period. Both NASA and the U.S. 

Air Force adopted the concept, marking a transition 

from conceptualization to formalization. In [8] 

(2012), the Digital Twin is heralded as the future of 

vehicle development and construction. The authors 

argue that integrating high-fidelity simulations, real-

time vehicle status, maintenance history, and 

comprehensive data from the entire fleet can achieve 

unprecedented levels of safety and reliability. 

Numerous companies, including Airbus 

and Boeing, initiated programs to develop their own 

Digital Twins. The concept was gaining popularity 

through Industry 4.0, aiming to enhance quality and 

optimize manufacturing processes. 

2.4 Expansion (2015 – Present) 

In this phase, the development of Digital Twins has 

expanded considerably, with a burgeoning body of 

literature on the subject [2], [3]. Advances in 

enabling technologies have made the concept more 

accessible, prompting many smaller companies to 

invest in its development. Siemens and General 

Electric have developed Digital Twin platforms for 

real-time monitoring, inspection, and maintenance 

[9]. 

The feasibility of Digital Twins began to be 

scrutinized. In 2017, the U.S. Air Force estimated 

that developing a Digital Twin for the Next 

Generation Air Dominance (NGAD) aircraft would 

cost between $1 and $2 trillion and require over a 

century to complete (an effort comparable to the 

Manhattan Project). 

This period also saw publications that 

further expanded and refined the concept. For 

instance, Tao and Zhang proposed a four-

dimensional Digital Twin framework comprising a 

physical entity, virtual model, service, and Digital 

Twin data [10]. In [5], it was suggested that the data 

flow between each module should be considered a 

crucial feature of the model. Consequently, it was 

assigned its own dimension, leading to the 

consolidation of the five-dimensional Digital Twin 

model framework [3]. 

Definitions of Digital Twins vary 

depending on the application domain, use cases, and 

authors. Kritzinger proposed classifying Digital 

Twins into three types based on their level of 

integration with the physical counterpart, 

specifically, whether the data flow between them is 

automatic: Digital Model, Digital Shadow, and 

Digital Twin [11]. This approach was critiqued by 

Grieves, who disagreed with the classification, 

particularly the concept of a "Digital Shadow" [12]. 

However, it was expanded upon by other scholars 

like Alexander Barbie, who in 2022 proposed the 

ARCHES Digital Twin framework [13]. Barbie 

offered formal definitions of related concepts often 

confused with Digital Twins such as Digital 

Shadow, Digital Twin Prototype, and Digital Model 

and provided a formal specification using Object-Z 

notation [14]-[16]. 
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Grieves suggested a model featuring three 

types of Digital Twins corresponding to different 

stages of a product's life cycle: the Digital Twin 

Prototype, Digital Twin Instance, and Digital Twin 

Aggregate [17]. 

On the industrial front, IoT platforms have 

been evolving into platforms that aim to facilitate 

Digital Twin implementation. Lehner identified a set 

of requirements these platforms should meet; 

however, none fully satisfy all the criteria, indicating 

that substantial work remains to be done [18]. 

In the aerospace industry, the term aero-DT 

is defined through three key dimensions: the 

physical side, which includes sensors and functional 

infrastructure; the virtual side, consisting of 

analytical models and artificial intelligence (AI); 

and the connection, referring to data transmission 

and the human-machine interface [19]. 

Digital Twins (DTs) in this sector optimize 

the product lifecycle, improve efficiency in new 

product development (NPD) and smart 

manufacturing, facilitate predictive maintenance 

and operations (O&M) management, reduce costs 

and operational risks, and enable high-fidelity 

simulations for informed decision-making 

throughout the entire product lifecycle [19]. 

III. KEY COMPONENTS OF DT 

The various definitions of Digital Twin 

(DT) make the conceptualization of its components 

somewhat diffuse and, above all, dependent on the 

application domain. However, we can identify three 

common components across the definitions 

discussed earlier [20]: 

3.1 Physical Reality 

This is the origin of our data flow. It 

represents the "real" product, including sensors, 

actuators, embedded software, and physical 

connections used [16]. Everything that will be 

modeled and considered in the creation of the 

Digital Twin falls under this component. It is the 

source of data, which, through the connection layer, 

will be utilized by the virtual side for processing and 

analysis. 

3.1.1 Physical System 

The physical system refers to the set of 

tangible components and devices that make up the 

product or infrastructure to be replicated [16]. This 

includes machines, equipment, and hardware that 

enable the operational function of the system. In 

most cases, the object will be a manufactured 

product, such as the "main bearing" of an aircraft 

[21], but there are also cases where the physical 

system could be a living organism or an aspect of a 

natural environment, as seen in the health or 

agriculture domains [14]. 

3.1.2 Physical Environment 

These are the environmental factors that 

affect the physical system. In the DT of an airplane, 

for instance, we might consider factors like external 

temperature, light, wind, or turbulence, as these 

affect the airplane itself [22]. The importance of this 

component varies across different applications. In 

wind farms, wind conditions will be a critical factor 

[23]. Incorporating models that predict or offer 

stochastic scenarios of future environmental states 

enhances the success of DT implementation [24]. 

3.1.3 Physical Process 

This refers to the set of processes by which 

the physical system interacts with its environment. 

These processes originate in the physical 

environment and manifest in the physical system, 

causing a state change. The physical system and 

environment have a bidirectional interdependence. 

An elevation on the temperature in an engine could 

reduce its lifespan, while the temperature increase 

may have been caused by actions carried out by the 

physical system itself. These processes are also 

subject to simulation by the DT. In [25], the growth 

of cracks in alloy 7075-T7351 of airplane wings is 

simulated [26]. 

3.1.4 Sensors 

Sensors are vital for the Digital Twin. They 

are the "senses" of our Digital Twin. The three 

components mentioned above are observed by the 

"virtual representation" through sensors, which 

collect the data to update the state of the virtual 

counterpart. New materials are being developed 

which can act as sensors in crack detection. This way 
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they can be used to check the crack status of the 

main frame or other relevant structures [27].  

3.2 Virtual Representation 

This component encompasses all the 

software pieces used in the Digital Twin. 

3.2.1 Virtual System 

The virtual system is the detailed and 

functional digital representation of the physical 

system, created using models as discussed in section 

3.2.4. This component allows us to experiment and 

analyze the behavior of the physical system. 

3.2.2 Virtual Environment 

The virtual environment digitally simulates 

the external conditions affecting the physical 

system, incorporating variables such as climate, 

topography, and other environmental factors. It 

provides data as input for process models that will 

update the state of the virtual system. This process 

may also operate in reverse. 

3.2.3 Virtual Processes 

Virtual processes demonstrate how the 

virtual system undergoes state changes through 

computational models of the corresponding physical 

processes. These models simulate the 

transformations experienced by the physical system. 

By replicating the relationships between inputs and 

outputs that affect the system's state, we can predict 

future states and evaluate different scenarios. This 

field of simulation is growing rapidly, thanks to 

advances in AI, machine learning, and other 

simulation techniques [21], [28], not only in terms 

of physical models but also process modeling [29]. 

3.2.4 Modeling 

There are various types of models used in 

Digital Twin systems: 

Physics-based models, also known as 

"model-driven" models, are defined using 

mathematical models and physical formulas. They 

are advantageous because they are strictly defined 

with mathematical formulas, making them more 

understandable in terms of model explainability 

[30]. That is, the functioning of the models is clear, 

and if they fail, it is possible to identify the error in 

the model's design [31]. These models are also easily 

transferable between domains when the problem is 

similar, with minor adjustments. 

Data-driven models are those that derive 

their logic from collected data. With improvements 

in IoT and sensors, the amount and quality of data 

available for collection has increased. Furthermore, 

computational capacity and the availability of 

machine learning tools have made it cheaper to 

develop high-performing data-driven models. These 

models help tackle situations where we lack 

theoretical understanding of the system's workings, 

as they aim to explain system behavior based on 

changes in variables [32]. 

3.3 Connection 

This component links the physical and 

virtual spaces. The connection must be bidirectional, 

which differentiates Digital Twins from concepts 

like the "digital shadow." The exchange of 

information can be automatic or manual, though this 

remains a debated issue in the scientific literature 

[17], [12], [16]. 

3.3.1 Physical to Virtual Connection 

The objective of this process is to update 

the virtual counterpart with the current state of the 

physical component. It is essential to maintain 

coherence between the physical and virtual systems, 

ensuring the Digital Twin accurately reflects the 

real-world conditions. 

Data is first collected from the sensors 

installed on the system and its environment. These 

sensors provide information on variables like 

temperature, pressure, and vibrations. Manual 

inputs, such as repair histories and visual 

inspections, are also incorporated to offer a more 

comprehensive view of the system's status. 

Techniques to improve data quality can be applied. 

In [33], a model that fuses noisy wind-tunnel and 

biased simulation data using a Bayesian framework 

is proposed, showing improved robustness with 

limited data and similar results to proper orthogonal 

decomposition with enough data. 

Next, the collected data is interpreted and 

analyzed. This involves preprocessing to eliminate 

noise and anomalies, as well as data curation to 
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correct errors and standardize formats, ensuring the 

quality and consistency of the information. 

Finally, the processed data is used to 

update the virtual representation. The states may 

directly match the sensor readings, but in some 

cases, the state will be inferred from the 

measurements. Techniques like data fusion can be 

crucial in this step.  

In the domain of intelligent maintenance, 

for example, the degradation state of a component 

might be updated based on all available data, 

including sensor readings. 

3.3.2 Virtual to Physical Connection 

For a Digital Twin to be truly "digital," 

there must be an exchange of information between 

the digital and physical twins. In most cases, this 

information exchange is intended to be automatic. 

For instance, if the Digital Twin identifies that 

increasing the fuel injection of an engine by a certain 

percentage extends its lifespan, this action would be 

automatically implemented, i.e., the physical twin 

would have actuators [16]. However, in some cases, 

either due to technical limitations or ethical 

concerns, this automatic exchange may not be 

feasible, such as in the case of DTs in humans[34] 

IV. REAL CASE SCENARIOS 

In the study [35], a digital twin system is 

created for 2-stroke heavy fuel aircraft engines (2S-

HFAE) to optimize manufacturing processes. 

Through simulation via DT, they achieve over a 4% 

improvement in gas exchange performance under 

various engine speed and load conditions. The 

article proposes a DTAF (Digital Twin-Assisted 

Framework) designed to optimize the gas exchange 

system in terms of performance and manufacturing, 

consisting of five key components (5-dimensional 

DT) [36], [3]: 

The Physical Entities represent the real-

world components, such as the engine and the gas 

exchange system, which are equipped with sensors 

for continuous real-time monitoring of operational 

conditions. The Virtual Modules simulate the 

physical processes, enabling optimization and 

decision-making within a virtual environment. 

These modules encompass various types of digital 

twins, including Behavior, Environment, 

Performance, Structure, Material, and Craft Digital 

Twins. 

The DT Service System is responsible for 

managing the data from both the physical entities 

and the virtual modules. It plays a crucial role in 

supporting the optimization of performance, design, 

and manufacturing through data fusion and analysis. 

The DT Data consists of real-time data generated 

from the physical entities and the virtual modules, 

driving continuous updates and iterative 

optimization of the system. Connections between all 

components facilitate data feedback and 

communication, ensuring enhanced interaction and 

operational efficiency throughout the system. 

Together, these components work 

cohesively to improve both optimization and 

manufacturing processes, reducing the need for 

extensive physical testing while supporting ongoing 

performance enhancements. 

The article also outlines a six-step 

optimization method based on digital twins. The 

first step involves the setup of Behavior and 

Environment DTs, where a virtual engine model is 

created using real-time experimental data to refine 

the simulation of key parameters, such as cylinder 

pressure and exhaust gas concentration. The second 

step, Performance DT and Optimization via Design 

of Experiments (DoE), uses DoE techniques to 

optimize system parameters, verifying their 

effectiveness through simulations and real-world 

data. 

In the third step, Material, Manufacturing, 

and Structure DTs are used to adjust virtual designs, 

refining assembly relationships based on material 

properties and manufacturing processes. During the 

Real Manufacturing Process and Feedback phase, 

errors and dimensional data from the actual 

manufacturing process are fed back into the system, 

allowing for adjustments to the simulations to better 

align with the physical reality. The Real 

Performance Testing and Validation step then 

validates the accuracy of the simulations through 

real-world tests, helping to reduce the need for 

further physical testing. Finally, the Final Product 

and Continuous Analysis phase involves the 

production of the optimized engine, while ongoing 

data analysis allows for real-time optimization 

adjustments throughout the engine’s lifecycle. 

For Virtual Engine Modeling, GT-Power is 

employed to simulate the engine, including the 
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intake, supercharging, crankshaft, cylinder, and 

exhaust systems. The model’s accuracy is 

continually improved by incorporating experimental 

data, reducing errors in parameters such as brake 

torque and intake flow by up to 88%. 

Lastly, Iterative Optimization with DoE is 

used to study the impact of variables like valve 

timings on engine performance. Genetic algorithms 

are applied to optimize valve timing, enhancing 

system parameters without the need for physical 

testing. 

The article demonstrates how the Digital 

Twin-Assisted Framework (DTAF) optimizes 

engine performance and manufacturing. By 

adjusting manufacturing parameters via the Virtual 

Craft DT, they improved tolerance adherence 

between virtual and real models, achieving a 4% 

improvement in performance and efficiency, mainly 

through valve timing optimizations. 

Apart from this example, there are more 

work that demonstrates the viability of using Digital 

Twin. 

As shown in [26], Digital Twin (DT) 

technology can be used for real-time monitoring and 

performance evaluation of horizontal axis tidal 

turbines (HATT), leveraging CFD simulations, 

Kriging interpolation, and machine learning to 

optimize hydrodynamic assessments and flow field 

monitoring. 

In the article [37] intelligent maintenance 

of an Aircraft Main Bearing is studied by 

implementing a DT. With sensors for the 

temperature, vibration and lubrication, the 

Remaining useful life (RUL) is predicted. This way 

the maintenance is applied based on the RUL instead 

of predefined timings.  

V. CONCLUSION 

The concept of the Digital Twin (DT) has 

evolved from its origins in aerospace applications, 

particularly NASA’s Apollo program, to become a 

transformative tool in industries ranging from 

manufacturing to healthcare. As technological 

advancements continue to address the challenges of 

real-time data processing, machine learning, and 

system simulation, the potential of Digital Twins to 

optimize performance, reduce costs, and improve 

safety is increasingly evident. 

The historical progression of the Digital 

Twin, from its conceptualization in the 1960s to its 

formalization in the early 2000s and eventual 

widespread adoption in the 2010s, reflects the 

growing sophistication of the enabling technologies 

and the expanding range of applications. The 

development of Digital Twins has been driven by 

the convergence of several technologies: the Internet 

of Things (IoT), sensor networks, data analytics, and 

machine learning, all of which contribute to the 

creation of high-fidelity, real-time virtual models 

that mirror the physical world. 

Despite significant progress, challenges 

remain in fully realizing the potential of Digital 

Twins. The complexity of data integration, the need 

for accurate and reliable sensor networks, and the 

necessity of real-time data processing are hurdles 

that still require attention. However, as 

demonstrated by the aerospace, automotive, and 

manufacturing sectors, the benefits of Digital Twins 

in improving product lifecycle management, 

predictive maintenance, and process optimization 

far outweigh these challenges. The development of 

frameworks such as the Digital Twin-Assisted 

Framework (DTAF) highlights the immense value 

that these models can provide, from reducing 

reliance on physical prototypes to optimizing system 

performance iteratively. 

Real-world case studies, such as those 

implemented in heavy fuel aircraft engines and tidal 

turbines, underscore the practicality of Digital Twin 

systems in optimizing operational efficiency and 

manufacturing processes. Through simulations, data 

fusion, and iterative optimization, Digital Twins 

facilitate improvements in performance and design, 

while also enabling ongoing adjustments throughout 

the lifecycle of complex systems. 

In conclusion, the Digital Twin marks a 

major advancement in modeling, analyzing, and 

optimizing physical systems through virtual 

counterparts. As adoption grows and enabling 

technologies evolve, its applications will expand, 

driving innovation and efficiency across industries. 

Future developments will focus on enhancing 

interoperability, improving simulation accuracy, 

and addressing ethical concerns around autonomous 

decision-making. Ultimately, Digital Twins will 

remain pivotal in shaping the future of technology 

and industry. 
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