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Abstract: A Study of the effect of earth’s oblateness and magnetic force on the motion and stability of the system 

of two cable connected satellites for the circular orbit of the centre of mass. We have got a set of non-linear, non-

homogenous and non-autonomous equation. The general solution of these equations can not be obtained even for 

the circular orbit of the centre of mass of the system. So, we have analysed the effected of the earth’s oblateness 

and magnetic force on the existence and behaviour of different equilibrium positions of the system. Also discuss 

about Hooke’s modulus of elasticity and concluded that its equilibrium position is stable in the Liapunov. 
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I. INTRODCUTION: 

The Jacobi integral is a formula of 

incorporating various parameters of the system with 

some variants for particular cases. An approach of 

describing the effect of earth’s oblateness and 

magnetic force on the motion and stability of the 

system of two cable connected satellites for the 

circular orbit of the centre of mass. We have got a 

set of non-linear, non-homogenous and non-

autonomous equation. In this approach, the general 

solution of these equations can not be obtained even 

for the circular orbit of the centre of mass of the 

system. So, we have analysed the effected of the 

earth’s oblateness and magnetic force on the 

existence and behaviour of different equilibrium 

positions of the system. Also discuss about Hooke’s 

modulus of elasticity and concluded that its 

equilibrium position is stable in the Liapunov. 

Here, we assume that the centre of mass of 

the system moves along a circular orbit.  

Thus, e = 0 

 ∴ 𝜌 =
1

1+𝑒𝑐𝑜𝑠𝑣
= 1 

 ∴ 𝜌′ = 0           … 

(1.1.1) 

 

Hence, the equation of motion takes the following form: 
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𝑥" − 2𝑦′ − 3𝑥 − 4𝛽𝑥 = −𝜆̅𝛼[1 −
𝐼0

𝑟
]𝑥 + 𝐴 𝑐𝑜𝑠𝑖 

𝑦" + 2𝑥′ + 𝛽𝑦 = −𝜆̅𝛼[1 −
𝐼0

𝑟
]𝑦        … (1.1.2) 

Where 𝐴 =
(

𝑚2
𝑚1 +𝑚2

)(
𝑄1
𝑚1

−
𝑄2
𝑚2

)𝜇𝐸

√𝜇𝑝
 

     𝜆̅𝛼 = (
𝑃3𝜆

𝜇𝐼0
) . (

𝑚1+𝑚2

𝑚1𝑚2
) 

     𝛽 =
3𝑘2

𝑃2  𝑎𝑛𝑑 𝑟 = √𝑥2 + 𝑦2 

In case of circular orbit, dashes will represent differentiation with respect to 𝜏 where (v is replaced by 𝜏  

) 

∴ 𝜏 = 𝜔𝑡              … 

(1.1.3) 

𝜔 being the angular velocity of the centre of mass of the system. 

 The condition of the constrained will assumes the form. 

 𝑥2
2 + 𝑦2

2 ≤ 𝐼0
2         … (1.1.4) 

 The motion will be described by the system of equations (1.1.2) in which 𝜆̅
𝛼 (𝑡) ≠ 0, we have from 

(1.1.2) 

𝑥" − 2𝑦′ − (3 + 4𝛽)𝑥 = −𝜆̅
𝛼[1 −

𝐼0

𝑟
]𝑥 + 𝐴 𝑐𝑜𝑠𝑖 

𝑦" + 2𝑥′ + 𝛽𝑦 = −𝜆̅𝛼[1 −
𝐼0

𝑟
]𝑦       … (1.1.5) 

The condition for constraint will assume the form 

𝑥2 + 𝑦2 ≤ 𝐼0
2          … (1.1.6) 

For the critical value of 𝜆̅
𝛼0 = 𝜆̅

𝛼0(𝑡0), the 

system will be moving like a dumbbell satellite and 

hence the new set of equations (1.1.5) does not 

contain time explicitly and therefore, there must 

exist Jacobian integral of the problem. 

 Multiplying the two equations of (1.1.5) by 

2𝑥′ and 2𝑦′ respectively and adding, we get after 

integration of Jacobian integral of the form: 

𝑥′2 + 𝑦′2 = (3 + 4𝛽)𝑥2 − 𝛽𝑦2 − 𝜆̃𝛼(𝑥2 + 𝑦2) + 2𝜆̃𝛼𝐼0(𝑥2 + 𝑦2)
1

2⁄ + 2𝐴𝑥𝑐𝑜𝑠𝑖 + ℎ 

           … 

(1.1.7) 

Where h is the constant of integration. The curve of 

zero velocity can be written in the form: 

(3 + 4𝛽)𝑥2 − 𝛽𝑦2 − 𝜆̃𝛼(𝑥2 + 𝑦2) + 2𝜆̃𝛼𝐼0(𝑥2 + 𝑦2)
1

2⁄ + 2𝐴 𝑥 𝑐𝑜𝑠𝑖 + ℎ = 0 … (1.1.8) 

∴ we conclude that the satellite 𝑚1 will move inside the boundary of different curves of zero velocity 

represented by (1.1.8) for different values of Jacobian constant h. 
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II. EQUILIBRIUM SOLUTION OF THE PROBLEM: 

If the system is moving with effective constraint and the cable remains tight, we have obtained the 

differential equations 

𝑥′′ − 2𝑦′ − 3𝑥 − 4𝛽𝑥 = −𝜆̃𝛼 (1 −
𝐼0

𝑟
) 𝑥 + 𝐴 𝑐𝑜𝑠𝑖 

𝑦′′ + 2𝑥′ + 4𝛽𝑦 = −𝜆̃𝛼 (1 −
𝐼0

𝑟
) 𝑦       … (1.2.1) 

The equilibrium positions of the system are given by the constant values of the co-ordinate in rotating 

frame of reference. 

 Let  𝑥 = 𝑥0 

             𝑦 = 𝑦0 

Where 𝑥0 and 𝑦0 are constants, give equilibrium position of the system. 

∴     𝑥′ = 𝑥0
′ = 0 = 𝑥′′ 

      𝑦′ = 𝑦0
′ = 0 = 𝑦′′   

Putting these values in (1.2.1) we get 

−3𝑥0 − 4𝛽𝑥0 = −𝜆̅
𝛼 (1 −

𝐼0

𝑟
) 𝑥0 + 𝐴 𝑐𝑜𝑠𝑖 

𝛽𝑦0 = −𝜆̅𝛼 (1 −
𝐼0

𝑟
) 𝑦0         … (1.2.2) 

Where 𝑟0 = √𝑥0
2 + 𝑦0

2 

Now, we discuss two particular solutions to the system of equations (1.2.2) which will be obtained as 

follows: 

 From the two equations of (1.2.2) we observe that  

𝑥0 = 0 

𝑦0 = 0 

Hence, there will be two positions of equilibrium: 

(i) The First Equilibrium Condition: - 

The system may be wholly extended along x – axis. Let this position be (a , 0). 

In this case,  

𝑥0 =≠ ,0, 𝑦0 = 0, 𝑟 = 𝑥0. 

−3𝑥0 − 4𝛽𝑥0 = −𝜆̅
𝛼 (1 −

𝐼0

𝑥0

) 𝑥0 + 𝐴 𝑐𝑜𝑠𝑖 

= −𝜆̅
𝛼𝑥0 + 𝜆̅

𝛼𝐼0 +  𝐴 𝑐𝑜𝑠𝑖 

or,  𝑥0(𝜆̅
𝛼 − 4𝛽 − 3) = 𝜆̅

𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖 
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∴ 𝑥0 =
𝜆̅

𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖

𝜆̅
𝛼 − 4𝛽 − 3

 

Here, 𝑥0 is positive and hence, 𝜆̅
𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖  will be taken positive throughout our discussion. 

∴   the first equilibrium condition is given by 

[
𝜆̅

𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖

𝜆̅
𝛼 − 4𝛽 − 3

, 0]                                                                                                                    … (1.2.3) 

 

 

(ii) Second equilibrium condition:- 

The system may be extended along y – axis,  𝑦 ≠0. We get from the second equation of (1.2.2) 

𝛽𝑦0 = −𝜆̅
𝛼 (1 −

𝐼0

𝑟0
) 𝑦0  

𝑜𝑟, 𝑦0 [𝛽 + 𝜆̅
𝛼 (1 −

𝐼0

𝑟0

)] = 0 

But  𝑦0 ≠ 0 

∴  𝛽 + 𝜆̅
𝛼 (1 −

𝐼0

𝑟0

) = 0 

𝑜𝑟, 𝜆̅
𝛼 (1 −

𝐼0

𝑟0

) = −𝛽 

or, 𝜆̅
𝛼 + 𝛽 = 𝜆̅

𝛼
𝐼0

𝑟0
   

𝑜𝑟, 𝑟0 =  
𝜆̅

𝛼𝐼0

𝜆̅
𝛼 + 𝛽

 

𝑜𝑟, 𝑥0
2 + 𝑦0

2 = [
𝜆̅

𝛼𝐼0

𝜆̅
𝛼 + 𝛽

]

2

 

𝑦0
2 = [

𝜆̅𝛼𝐼0

𝜆̅𝛼+𝛽
]

2

− 𝑥0
2         … (1.2.4) 

Now, from 2nd equation of (1.2.2), we get 

𝑜𝑟, 𝜆̅𝛼 (1 −
𝐼0

𝑟0
) = −𝛽          … (1.2.5) 

∴ from the first equation of (1.2.2) by using (1.2.5), 

We have, 

 −3𝑥0 − 4𝛽𝑥0 = 𝛽𝑥0 + 𝐴 𝑐𝑜𝑠𝑖 

or,  𝑥0(5𝛽 + 3) = −𝐴 𝑐𝑜𝑠𝑖 

 ∴ 𝑥0 = (−𝐴 𝑐𝑜𝑠𝑖)/(5𝛽 + 3)         … (1.2.6) 

Using equation (1.2.6) in (1.2.4), we get 

𝑦0
2 = {

𝜆̅
𝛼𝐼0

𝜆̅
𝛼 + 𝛽

}

2

− {
𝐴 𝑐𝑜𝑠𝑖

5𝛽 + 3
}

2

 

𝑦0 = ±[{
𝜆̃𝛼𝐼0

(𝜆̃𝛼 + 𝛽)
}2 − {

𝐴 𝑐𝑜𝑠𝑖

5𝛽 + 3
}

2

]
1

2⁄  
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∴ The 2nd equilibrium position is given by 

[{
−𝐴 𝑐𝑜𝑠𝑖

(5𝛽 + 3)
} , ±[{

𝜆̅
𝛼𝐼0

𝜆̅
𝛼 + 𝛽

}

2

− {
𝐴 𝑐𝑜𝑠𝑖

5𝛽 + 3
}

2

]
1

2⁄ ]                                                                … (1.2.7) 

Thus, we have obtained the co-ordinates of the points of two equilibrium positions of the system as 

given in (1.2.3) and (1.2.7). 

III. THE VALUE OF THE MODULUS OF ELASTICITY: 

 

 

 

 

 

 

We suppose that the extended length of the 

cable connecting the two satellites is 𝐼𝐸  at any 

equilibrium position and 𝑟0 i.e; the length of 

normalized extended cable between the centre of 

mass of the system and the satellite 𝑚1. Hence, 

actual extended length of the cable between 𝑚1 and 

the centre of mass will be  
𝒓𝟎𝒗

𝑰𝟎
   where v is given by 

𝑣 = 𝐼0  
𝑚2

𝑀
. 

 Now, taking moments of different masses 

about the satellite 𝑚1 in equilibrium position, 

𝑚2𝐼𝐸 = (𝑚1 + 𝑚2) (
𝑟0𝑣

𝐼0
) 

𝑜𝑟, 𝑚2𝐼𝐸 = (𝑚1 + 𝑚2) (
𝑟0

𝐼0
) . (

𝐼0𝑚2

𝑀
)     [∴ v =

𝐼0𝑚2

𝑀
] 

𝑜𝑟, 𝐼𝐸 = 𝑟0           ... 

(1.3.1) 

We consider the two equilibrium positions of the system separately for obtaining the value of Hooke’s 

modulus of elasticity. 

(i) First Equilibrium Positiion; 

In this case; 

𝑟0 = 𝑎 = 𝑥0 =
𝜆̅𝛼𝐼0+𝐴 𝑐𝑜𝑠𝑖

𝜆̅𝛼−4𝛽−3
       ... (1.3.2) 

Comparing equations (1.3.1) and (1.3.2), we get, 

𝐼𝐸
′ =

𝜆̅𝛼𝐼0+𝐴 𝑐𝑜𝑠𝑖

𝜆̅𝛼−4𝛽−3
         … (1.3.3) 

Where 𝐼𝐸
′  is the stretched length of the cable in the first equilibrium position 

Since, 

𝜆̅𝛼 = (
𝑃3𝜆

𝜇𝐼0
) . {

𝑚1 + 𝑚2

𝑚1. 𝑚2
} 

 

                   C 

𝑚2 𝑚1 

𝐼𝐸  

𝑟0𝑣

𝐼0
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𝜆 = (
𝜇𝐼0

𝑃3
) . {

𝑚1. 𝑚2

𝑚1 + 𝑚2
} 𝜆̅𝛼 

Finding the value of 𝜆̅
𝛼 from (1.3.3) and putting this value of 𝜆̅

𝛼 in the above, we get, 

𝜆 = (
𝜇𝑚1𝑚2𝐼0

𝑃3(𝑚1 + 𝑚2)
) .

{3𝐼𝐸
′ + 4𝛽𝐼𝐸

′ + 𝐴 𝑐𝑜𝑠𝑖}

(𝐼𝐸
′ − 𝐼0)

> 0           … (1.3.4) 

The relation (1.3.4) gives a meaningful value of 𝜆  in the case of the first equilibrium position. 

 In this case, we may also obtain the length of the stretched cable 𝐼𝐸
′  from (1.3.4) in the form 

𝐼𝐸
′ =

−𝐴 𝑐𝑜𝑠𝑖 . 𝜇𝑚1𝑚2 − 𝜆𝑃3(𝑚1 + 𝑚2)𝐼0

3𝜇𝑚1. 𝑚2𝐼0 − 𝜆𝑃3(𝑚1 + 𝑚2) + 4𝛽𝜇𝑚1. 𝑚2𝐼0
                            … (1.3.5) 

(ii) Second Equilibrium Position 

In this case 

𝑟0 = √𝑥0
2 + 𝑦0

2 = √(
𝐴 𝐶𝑜𝑠𝑖

5𝛽 + 3
)

2

+ (
𝜆̅

𝛼𝐼0

𝜆̅
𝛼 + 𝛽

)

2

− (
𝐴 𝑐𝑜𝑠𝑖

5𝛽 + 3
)

2

 

 

= √
(𝜆̅

𝛼 + 𝛽)
2

(𝐴 𝑐𝑜𝑠𝑖)2 + 𝜆̅
𝛼

2
𝐼𝛼

2(5𝛽 + 3)2 − (𝐴 𝑐𝑜𝑠𝑖)2. (𝜆̅
𝛼 + 𝛽)

2

(5𝛽 + 3)2. (𝜆̅
𝛼 + 𝛽)

2  

=  √
𝜆̅

𝛼
2

𝐼𝛼
2(5𝛽 + 3)2

(5𝛽 + 3)2. (𝜆̅
𝛼 + 𝛽)

2 

𝑖. 𝑒. ; 𝑟0 = 𝑏 =
𝜆̅𝛼𝐼0

(𝜆̅𝛼 + 𝛽)
                                                                   . . . (1.3.6) 

𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 (1.3.1) and (1.3.6), we get 

𝐼𝐸
′ = 𝑟0 = 𝑏 =

𝜆̅𝛼𝐼0

(𝜆̅𝛼 + 𝛽)
                                                                           … (1.3.7) 

Where 𝐼𝐸
′   being the extended length of the 

cable in the second equilibrium position. 

 Equation (1.3.7) relates to motion of the 

system with unextended string or loose string. In this 

case 𝜆 , the Hooke’s modulus of elasticity, is not 

positive and hence it does not give the meaningful 

value of 𝜆 . therefore, the second position of 

equilibrium is untenable. 

 In this way, we conclude that only the first 

position of equilibrium provides a significant value 

of 𝜆. And the other position gives meaningless value 

of 𝜆. 

 Therefore, we shall establish the stability 

for the system in the first position of equilibrium (a, 

0) only. 

IV. STABILITY OF THE SYSTEM: 

 We shall study the stability of the first 

equilibrium position of the system in the liapunov’s 

sense. The first equilibrium position is given as 

x = a,  y = 0 

 Let us suppose that there are small 

variations in the co-ordinates at the given 

equilibrium position. 
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 Let 𝛿1 𝑎𝑛𝑑 𝛿2 be small variations in the 

𝑥0 𝑎𝑛𝑑 𝑦0 co-ordinates respectively for a given 

position of equilibrium. 

∴  𝑥 = 𝑎 + 𝛿1,            𝑦 = 0 + 𝛿2 

∴  𝑥′ = 𝛿1
′       ,   𝑦′ = 𝛿2

′           

𝑥′′ = 𝛿1
′′      ,   𝑦′′ = 𝛿2

′′     

Putting these values in the set of equations (1.2.1) we get 

𝛿1
′′ − 2𝛿2

′ − 3(𝑎 + 𝛿1) − 4𝛽(𝑎 + 𝛿1) = −𝜆̅
𝛼 (𝐼 −

𝐼0

𝑟1

) (𝑎 + 𝛿1) + 𝐴 𝑐𝑜𝑠𝑖 

𝛿2
′′ + 2𝛿1

′ + 𝛽𝛿2 = −𝜆̅
𝛼 (𝐼 −

𝐼0

𝑟1

) . 𝛿2                                                                              … (1.4.1) 

Where, 𝑟1
2 = (𝑎 + 𝛿1)2 + 𝛿2

2                                                                 … (1.4.2) 

The variational equations of (1.4.1) will have the same Jacobi’s integral as the original set of equations 

given by (1.3.1) 

This will take the form 

(𝛿1
′)2 + (𝛿2

′ )2 = (3 + 4𝛽)(𝑎 + 𝛿1)2 − 𝛽 𝛿2
2 − 𝜆̅

𝛼{(𝑎 + 𝛿1)2 + 𝛿2
2} + 2 𝜆̅

𝛼𝐼0{(𝑎 + 𝛿1)2 +  𝛿2
2}

1
2⁄

+ 2𝐴(𝑎 + 𝛿1)𝑐𝑜𝑠𝑖 + ℎ1              … (1.4.3)  

Where ℎ1 is the constant of integration. 

In this way we have obtained the equation (1.4.3) as the Jacobi’s integral for the system of variational 

equations. 

 Expanding the terms, the equation (1.4.3) can be written as – 

𝑉(𝛿1, 𝛿2, 𝛿1
′ , 𝛿2

′ ) = (𝛿1
′)2 + (𝛿2

′ )2 + (𝛿1)2[−(3 + +4𝛽) + 𝜆̅
𝛼] + (𝛿2)2 [𝜆̅𝛼 − (

𝐼𝛼𝜆̅
𝛼

𝑎
) + 𝛽]

+ 𝛿1[−2(3 + 4𝛽)𝑎 + 2𝑎𝜆̅
𝛼 − 2𝜆̅

𝛼𝐼0 − 2𝐴 𝑐𝑜𝑠𝑖]

+ [𝑎2𝜆̅
𝛼 − (3 + 4𝛽)𝑎2 − 2𝑎𝜆̅

𝛼𝐼0 − 2𝑎 𝐴 𝑐𝑜𝑠𝑖] + 0(3) = ℎ1           … (1.4.4) 

Where 0(3) stands for the third and higher 

order terms in the small quantities 𝛿1 𝑎𝑛𝑑 𝛿2. 

 Now, we shall take with the help of 

Liapunov’s theorem on stability for obtaining the 

sufficient conditions for stability. The Jacobian 

integral V is the integral of the system for the 

variational equatioins (1.4.1), its differential 

equation taken along the trajectory of the system 

must vanish identically. 

 Therefore, the only condition that the 

unilateral position be stable in the Liapunov’s sense 

is that V must be positive definite. For making the 

function a positive definite function it is necessary 

that the function (1.4.4) does not have the term of 

the first order in the variables shown in its argument 

and the terms of the second order must satisfy, 

Sylvester’s conditions for positive definite form. 

The third and higher order terms will have no effect 

on the sign of the function V. Hence. We conclude 

that the sufficient conditions for the stability of the 

system at the equilibrium position in the Laipunov’s 

sense are 

(i) −2(3 + 4𝛽)𝑎 + 2𝑎𝜆̅𝛼 − 2𝜆̅𝛼𝐼0 − 2𝐴 𝑐𝑜𝑠𝑖 = 0 

(ii) 𝜆̅𝛼 − (3 + 4𝛽) > 0 
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(iii) 𝜆̅𝛼 − (
𝜆̅𝛼𝐼0

𝑎
) + 𝛽 > 0                                                                      … (1.4.5) 

We now analyse the several conditions of (1.4.5) 

for stability of the system at the given equilibrium 

position separately. 

Condition (i) 

 𝐿. 𝐻. 𝑆. = −2(3 + 4𝛽)𝑎 + 2𝑎𝜆̅𝛼 −

2𝜆̅𝛼𝐼0 − 2𝐴 𝑐𝑜𝑠𝑖 

 = 2𝑎(𝜆̅𝛼 − 3 − 4𝛽) − 2𝜆̅𝛼𝐼0 −

2𝐴 𝑐𝑜𝑠𝑖 

= 2 [
𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖

𝜆̅𝛼 − 3 − 4𝛽
] (𝜆̅𝛼 − 3 − 4𝛽) − 2𝜆̅𝛼𝐼0

− 2𝐴 𝑐𝑜𝑠𝑖 

= 2𝜆̅𝛼𝐼0 + 2𝐴 𝑐𝑜𝑠𝑖 − 2𝜆̅𝛼𝐼0 − 2𝐴 𝑐𝑜𝑠𝑖 = 0 

∴ The first condition is satisfied 

identically 

Condition (ii) 

𝐿. 𝐻. 𝑆 = 𝜆̅𝛼 − (3 + 4𝛽) 

= (𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖)/𝑎 > 0 

[∵ 𝑎 =
𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖

𝜆̅𝛼 − 3 − 4𝛽
> 0] 

= 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

∴   the second condition is also satisfied 

identically. 

Condition (iii) 

𝐿. 𝐻. 𝑆 = 𝜆̅𝛼 − 𝜆̅𝛼𝐼0/𝑎 + 𝛽 

= 𝜆̅𝛼 − 𝜆̅𝛼𝐼0. [
𝜆̅𝛼 − 4𝛽 − 3

𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖
] + 𝛽 

=
𝜆̅𝛼(𝐼0𝜆̅𝛼 + 𝐴 𝑐𝑜𝑠𝑖) − 𝜆̅𝛼𝐼0(𝜆̅𝛼 − 4𝛽 − 3) + 𝛽(𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖)

𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖
 

=
𝜆̅𝛼

2
𝐼0 + 𝜆̅𝛼𝐴 𝑐𝑜𝑠𝑖 − 𝜆̅𝛼

2
𝐼0 + 4𝜆̅𝛼𝐼0𝛽 + 3(𝜆̅𝛼𝐼0) + 𝜆̅𝛼𝛽𝐼0 + 𝛽 𝐴 𝑐𝑜𝑠𝑖

𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖
 

=
𝜆̅𝛼(5𝐼0𝛽 + 3 𝐼0 + 𝐴 𝑐𝑜𝑠𝑖) + 𝛽(𝐴 𝑐𝑜𝑠𝑖)

𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖
 

 

=
𝜆̅𝛼(3 𝐼0 + 5𝛽 𝐼0 + 𝐴 𝑐𝑜𝑠𝑖) + 𝛽(𝐴 𝑐𝑜𝑠𝑖)

𝑎(𝜆̅𝛼 − 4𝛽 − 3)
            ∴ 𝑎 =

𝜆̅𝛼𝐼0 + 𝐴 𝑐𝑜𝑠𝑖

𝜆̅𝛼 − 4𝛽 − 3
> 0 

= 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒   

Hence, the third condition is also satisfied identically. 

Thus, we see that all the three conditions of (1.4.5) for stability are satisfied identically. 

Hence, we conclude that the equilibrium is stable at (a, 0) in the Liapunov’s sense. 

V. CONCLUSION: 

The equilibrium solution of the problem 

and their stability in case of the circular orbit of the 

centre of mass of the system. On the basis of the 

analysis of the free motion of the system it has been 

proved that all the motions of the system are bound 

to be converted into constrained one and hence the 

Jacobi’s integral has been deduced for the motion. 

Only one equilibrium position has been obtained and 
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meaningful value of the Hooke’s modulus of 

elasticity 𝜆 for the connecting cable has been 

obtained at the equilibrium position. Moreover, it 

has been concluded that only this equilibrium 

position is stable in the Liapunov’s sense. 
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