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Abstract: Natural convection over a vertical plate heated in the presence of variable viscosity and thermal 
conductivity is of great importance from an engineering point of view, and many researchers have studied this 
topic. The nature of heat generation and viscous dissipation on natural convection flow along a vertical flat plate 
is investigated in this work. Two-dimensional laminar flow and unstable boundary layer equations are discussed 
here. The fundamental governing equation is turned into a dimensionless governing equation by using the 
necessary variables. The Crank Nicolson scheme is an efficient implicit finite difference approach for numerical 
computations of these equations. Heat generation, viscosity dissipation and thermal conductivity were explored 
in this work. The impacts of numerous parameters are demonstrated in this study and compared to other 
researchers' velocity profiles, temperature profiles, local skin friction, and local heat transfer coefficient. Compare 
the present numerical results to the work outcomes that were previously released. It also compares the number of 
works available to the number of works published previously. The results are given in both figures and tables for 
various values of related physical parameters. 
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I. Introduction 

Natural convection occurs as the fluid's density 
varies as a result of temperature changes. Because of 
its widespread usage in both science and 
engineering, natural convection has piqued the 
interest of many academics. In addition, scientists 
and academics are fascinated by the topic of natural 
convection flow down a vertical flat plate because of 
the several applications it may potentially serve. 
This phenomenon is widely seen in the design of 
micro structures and fluid flows around shrouded 
heat dissipation fins in a variety of technical 
applications such as cooling molten metal and 
nuclear reactors. When it comes to industrial 
cooling, natural convection is a popular method. The 
resistance to the flow of fluid is measured by 

viscosity, which is also a measure of internal fluid 
friction. To dissipate energy, labor must be done to 
distort a viscous material. While thermal 
conductivity, on the other hand, is a measure of heat 
transport efficiency. Many studies have been 
conducted on viscous dissipation and thermal 
conductivity due to their significance. 
 
Effects of variable viscosity and dependent thermal 
conductivity on free convection flow along a vertical 
flat plate with heat conduction are significant from 
the different views. Researcher gets interest in the 
technology and process for their purpose. Sarker and 
Alam [1] studied the effects of variable viscosity and 
thermal conductivity on MHD natural convection 
flow along a vertical flat plate. Alam et al. [2] 
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considered the Effect of pressure stress work and 
viscous dissipation in natural convection flow along 
a vertical flat plate with heat conduction. Alim et al. 
[3] investigated the Joule heating effect on the 
coupling of conduction with MHD free convection 
flow from a vertical flat plate. Rahman et al. [4] 
presented the effects of temperature dependent 
thermal conductivity on MHD free convection flow 
along a vertical flat plate with heat conduction. Alim 
et al. [5] studied the combined effect of viscous 
dissipation & Joule heating on the coupling of 
conduction & free convection along a vertical flat 
plate. Molla et al. [6] considered the Natural 
convection flow along a vertical wavy surface 
temperature in presence of heat generation. Islam et 
al. [7] presented the effects of temperature 
dependent thermal conductivity on natural 
convection flow along a vertical flat plate with heat 
generation. Kabir et al. [8] analyzed the effects of 
viscous dissipation on MHD natural convection 
flow along a vertical wavy surface. Viscous and 
Joule heating effects on MHD free convection flow 
with variable plate temperature is investigated by 
Hossain [9]. Palani & Kim [10] studied numerical 
study on vertical plate with variable viscosity and 
thermal conductivity. 
 
In this work, an analytical solution for the variable 
viscosity and dependent thermal conductivity in 
natural convection flow over a vertical flat plate in 
the presence of heat conduction will be produced 
based on experimental analysis. The discretization 
of momentum and energy equations in terms of non-
dimensional coordinates X and Y in order to express 
the equations in finite difference form by 
approximating functions and derivatives in terms of 
the central differences in both coordinate directions. 
The numerical simulations of these equations led to 
the development of a computer code for the current 
issue, which uses an efficient implicit finite-
difference approach. The Crank-Nicolson scheme is 

what it's called. For various parameters such as 
variable viscosity, dependent thermal conductivity, 
heat generation,viscous dissipation and Prandtl's 
number, the outcomes data analysis has developed 
for velocity profile, temperature profile, local skin 
friction, local Nusselt number, average skin friction, 
and average Nusselt number. 
 

II. mathematical Analysis 
The unsteady flow of a viscous incompressible fluid 
across a semi-infinite vertical plate is considered 
here. As indicated in Fig: 1, the 𝑋-axis is taken 
vertically upward along the plate, and the 𝑌-axis is 
picked perpendicular to the plate at the leading edge. 
The origin of the 𝑋-axis is assumed to lie at the 
plate's leading edge. Except for the fluid viscosity, 
which varies exponentially with fluid temperature, 
the thermal conductivity, which varies linearly with 
fluid temperature, and the density variation in the 
body force term in the momentum equation, where 
the Bossiness approximation is used, all fluid 
physical properties are assumed to be constant. 

 
Fig:1 Plate Configuration 

 
The mathematical statement of the basic 
conservation laws of mass, momentum and energy 
for the steady viscous incompressible and 
electrically conducting flow, after simplifying we 
have 
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Here, U  and V  are the velocity components along 

the X  and Y  axis respectively, t  is the time, T  
is the temperature of the fluid in the boundary layer 

and T   is the fluid temperature far away from the 

plate , g is the acceleration due to gravity,    is the 
thermal conductivity of the fluid,  is the density, 

Cp  is the specific heat at constant pressure and   

is the variable dynamic co-efficient of  viscosity of 
the fluid.  The amount of heat generated or absorbed 

per unit volume is  TTQ0 , Q0 being a 

constant, which may take either positive or negative. 
The source term represents the heat generation when 

Q0 0 and the heat absorption when      Q0 0.  Tk   

is the thermal conductivity of the fluid depending on 

the fluid temperature T , 0 is the electric 

conduction. 
The initial and boundary conditions are 

 

0 : 0, 0, wt U V T T       for all Y  

0 : 0, 0, wt U V T T       at 0Y   

0 : 0,t U T T      at 0X   

0 : 0,t U T T      as Y    

 
 
(4) 

 
On introducing the following non-dimensional quantities in equations (1) to (4), we have 
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(5) 

 
Here L is the length of the plate,   is the kinematic 

viscosity, Gr is the Grashof number, Pr is the Prandtl 
number. Out of many forms of variation of viscosity 
and thermal conductivity with dimensionless 

temperature T , which are available in the literature. 
The following forms are proposed by Stattery [11], 
Ockendon and Ockendon [12], Elbashbeshy and 
Ibrahim [13], Wilson and Duffy [14], and Seddeek 

and Abdelmegguid [15]   
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Where     and   denote the viscosity and thermal 

conductivity variation parameters respectively, 

depended on the nature of the fluid. Here 0  and 

0k  are the viscosity and the thermal conductivity at 

temperature wT  . 
The magneto hydrodynamic field in the fluid is 
governed by the boundary layer equations, which in 
the non-dimensional form obtained by introducing 
the dimensionless variables described in (5), may be 
written the equation of continuity as 
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(8) 

 
Now momentum equation (2) can be reduced by applying the non- dimensional transformation (5) and (6), we 
have 
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Again, the energy equation (3) can be reduced by the above similarity transformation (5) and (7), we have 
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(10) 

The corresponding initial condition and boundary condition in a dimensionless form are as follows 
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Equations (8) to (11) with the boundary condition (11) describe the free convective unsteady laminar boundary 
layer flow with variable viscosity and thermal conductivity along an isothermal semi-infinite vertical plate. 
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The local shear stress in the plate is defined by  
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By introducing the non-dimensional quantities given in equations (5) -(6) in (12), we get non-dimensional form 
of local skin friction and it is given by 
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The integration of equation (13) from 0X   to 1X   gives the average skin friction and it is given by 
13
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The local Nusselt number is defined by 
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The integration of equation (15) from 0X   to 1X   gives the average skin friction and it is given by 
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III. Numerical Techniques 

The two-dimensional, non-linear, unsteady and 
coupled partial differential Equations (8) -(10) under 
the initial and boundary conditions in Equation (11) 
are solved using an implicit finite difference scheme 

of Crank-Nicol-son type which is fast convergent 
and unconditionally stable. The finite difference 
equation corresponding to Equations (8) to (10) are 
given by 
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The region of integration is considered as a rectangle 
with sides Xmax(=1) and Ymax(=10), where Ymax 

Corresponds to Y=, which lies very well outside 
the momentum and energy boundary layers. The 
maximum of Ywas chosen as zero to several position 
after some preliminary investigations so that the last 
two of the boundary conditions (11) are satisfied. 
Here, the subscript i-designates the grid point along 
the U-direction, j-along the V-direction and the 
superscript k along the t-index. During any one-time 

step, the coefficients ,
k
i jU  and ,

k
i jV  appearing in the 

difference equations are treated as constants. The 
values of U, V and T are known at all grid points at t 
= 0, from the initial conditions. The computations of 

U, V and T at time level ( 1)k   using the values at 

previous time level are carried out as follows: the 
finite difference equation (18) at every internal 
nodal point on a particular i-level constitute a 
tridiagonal system of equations. Such a system of 
equations is solved by Thomas algorithm as 
described in Carnahan et al. [16]. Thus, the values 
of T are found at every nodal point for a particular 

iat ( 1)thk  time level. Using the values of T at

( 1)thk   time level in the equation (13), the values 

of Uat ( 1)thk  time level are found in a similar 

manner. Thus, the values of T and U are known on a 

particular i-level. Finally, the values of V are 
calculated explicitly using the equation (12) at every 

nodal point on a particular i-level at ( 1)thk  time 

level. This process is repeated for various i-levels. 
Thus the values of T, U and V are known, at all grid 

points in the rectangular region at ( 1)thk   time 

level. 
 
After considering with few sets of mesh sizes, they 

have been fixed at the level X = 0.05, Y = 0.25, 

and the time step t = 0.01. In this case, spatial mesh 
size is reduced by 50% in one-direction then in both 
directions, and the results are compared. It is 
observed that, when mesh size is reduced by 50% in 
X-direction and Y-direction, the results differ in 
fourth decimal place. Hence the above-mentioned 
sizes have been considered as appropriate mesh size 
for calculations. Computations are carried out until 
the steady-state is reached. The steady-state solution 
is assumed to have been reached, when the absolute 
difference between the values of U, as well as 
temperature T at two consecutive time steps are less 
than 10-5 at all grid points. The local truncation error 

is O (f2 + F2 + X) and it tends to zero as t,X 

and Y tend to zero, which shows that the scheme is 
compatible. Also, the Crank-Nicolson type of 
implicit finite difference scheme is proved to be 
unconditionally stable for a natural convective flow 
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in which there is always a non-negative value of 
velocity U and a non-positive value of V. Thus, 
compatibility and stability ensure the implicit finite 
difference scheme is convergent. 
 

IV. Results and Discussions 
The direct microscopic exchange of kinetic energy 
of particles via the border between two systems is 
known as heat conduction, sometimes known as 
diffusion. Water is an excellent heat transfer fluid 
because of its large thermal capacity and low 
viscosity. Oil has a greater liquid temperature than 
water, therefore it's been a popular alternative for 
avoiding the problem of high pressure. Heat is 
transferred between the Earth's surface and the 
atmosphere by conduction, radiation, and 
convection.  
 
Heat is transferred via convection when a heated 
fluid, such as air or water, is forced to flow away 
from the source of heat, carrying energy with it. 
Convection happens when hot air expands, becomes 
less dense, and rises above a heated surface. Because 
liquid metals have a low Prandtl's number, heat 
transmission through molecular thermal conduction 
is important not only in the near-wall layer, but also 
in the flow core, even in a fully developed turbulent 
flow. 
 

The following ranges for , ϒand Prare considered 
in the present study are: 

For air:   - 0.7  0, 0 ϒ6,  Pr = 0.733 

For water: 0  0.6, 0 ϒ 0.12, 1 Pr 7.00 
 
In order to check the accuracy of our computed 
values, we compare our results with the curves 
computed by Sarker and Alam [1] &Palani and Kim 

[10]. for various values of  and ϒfor air (Pr= 0.733). 
These are plotted in Figs. 2(a), 2(b). Our results 
agree very well with those of Sarker and Alam [1] 
&Palani and Kim [10]. at the steady state. 
 
During the initial period the following step changes 
in the wall temperature, the body force has not had 
sufficient time to generate and appropriate motion in 
the fluid. Hence the velocity components Uand V 
both are negligible for small time t. During this 
initial transient regime, the heat transfer is 
dominated by pure heat conduction, and hence for 

constant viscosity and thermal conductivity. 
Equation (10) reduces to 
 

2

2

1

Pr

T T

t Y

 


 
 

 
Thus, for short times, it is noted that for a given 
Prandtl’s number, magnetic parameter, the 
temperature profile is a function of time only and 
normal distance from the wall. Setting Pr= 1, the 
solutions of equation. (15) subject to the initial and 
boundary conditions given in local Nusellt number 
are 
 

2

Y
T erfc

t

 
  

 
                                    (20)                                   

 
Figures 3 to 14 shows that the variation of velocity 
and temperature at their transient, temporal 
maximum and steady state against the co-ordinate Y 
at the leading edge of the plate viz., X = 1.0 for 
variable viscosity, thermal conductivity, heat 
conduction variation parameters, viscous dissipation 
and Prandtl’s numbers. The fluid velocity increases 
and reached its maximum value at very near to the 

wall (i.e., 0 Y2) and then decreases monotonically 
to zero as Y becomes large for all time t. It is also 
observed that the velocity and temperature increase 
with time t, reaches a temporal maximum and 
consequently it reaches the steady state. 
 
Figures 3(a) and 3(b) shows that the variation of 
transient velocity and temperature profiles with area 
A for a fixed value of ϒ = 1.00 in air (Pr = 0.733), N 
= 0.40 and Q = 0.50. The velocity of the fluid 
increases with time until a temporal maximum is 
reached and thereafter a moderate reduction is 
observed until the ultimate steady state is reached. It 
is observed that the time taken to reach the steady 
state decreases marginally with an increasing the 
viscosity variation parameter.  
 
From figure 3(a), it is clear that velocity U at any 
vertical plane near to the plate increases as X 
increases (the viscosity of air decreases). But an 
opposite trend is observed at a certain distance from 
the wall. From figure 3(b), it is observed that the 

temperature of the fluid decreases as  increases (the 
viscosity of air decreases). 
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Figures 2(a) and 2(b): Variation of dimensionless velocity profiles and temperature profiles against 
dimensionless Y for different values of variable thermal conductivity parameter ϒ with others fixed 

parameters. 
 
 

  
Figures 3(a) and 3(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless Y for different values of variable viscosity parameter with others fixed parameters. 
 
 

  
Figures 4(a) and 4(b): Variation of dimensionless velocity profiles and temperature profiles against 
dimensionless Y for different values of variable thermal conductivity parameter ϒ with others fixed 

parameters. 
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The numerical values of the variation of transient 
velocity and temperature profiles with ϒ for a fixed 

value of  = - 0.30, Q = 0.60, N = 0.30 in air (Pr = 
0.733) with the variation of thermal conductivity 
parameter ϒ are shown graphically in figures 4(a) 
and 4(b). From these figures, it is observed that the 
velocity and temperature distribution in the fluid 
increases as ϒincreases (thermal conductivity of air 

increases) for fixed value of , Q and Pr. It can also 
be noticed that with an increase in ϒ, the rise in the 
magnitude of the velocity and temperature is 
significant, which implies that the volume flow rate 
increases with an increase in ϒ. The effect of 
variation of thermal conductivity on velocity and 
temperature is more significant even in the initial 
transient period. Also, it is observed that the time to 
reach the temporal maximum and steady state 
decreases with increasing thermal conductivity 
parameter,ϒ. 
 
The numerical values of variation velocity and 
temperatures are calculated from equations (13) and 
(14) are depicted in the graphical form in the figures 
5(a) and 5(b) for various values of N for fixed value 

of Q=0.60, ϒ=0.90, =-0.40  in air (Pr=0.733).It is 
clearly noticed that the time taken to reach the 
temporal maximum and steady state decreases with 
an increasing the viscous dissipation parameter, N.It 
can be seen from figure 5(a) that an increase in the 
viscous dissipation parameter, N increases the 
velocity of the flow near the wall, because the 
viscosity of water decreases with an increase of the 
viscous dissipation parameter, N as seen in equation 
(6).Also, the maximum velocity gets very closer to 
the wall for higher values of N.This qualitative effect 
arises because, for the case of viscous dissipation 
(N> 0), the fluid is able to move more easily in a 
region close to the heated surface in association with 
the fact that the viscosity of the fluid with N> 0 is 
lower relative to the fluid with constant viscosity. 
This results in thinner velocity and thermal 
boundary layers. 
 
It is observed that as Nincreases (the viscosity of 
water decreases), the velocity of the fluid particle 

increases only in the region 0 y 2. From figure 
5(b), it is noticed that the temperature profiles 
decrease with increasing N.This is in association 
with the fact that an increase in Nyields an increase 
in the peak velocity. The first effect increases the 

velocity of the fluid particle, due to the decrease in 
the viscosity and the second effect decreases the 
velocity of the fluid particle, due to the decrease in 
the temperature near the plate, the temperature Tis 
high, consequently the first force will be dominant 
and the velocity Uincreases as N increases. On the 
other hand, the temperature Tis low for far away 
from the plate, the second effect will be dominant 
and the velocity decreases as N increases. From the 
discussion, we notice that by neglecting the 
variation of fluid viscosity and thermal conductivity 
will introduce a substantial error. 
 
Figures 6(a) and 6(b) shows that the variation of 
velocity and temperature for various values of Q for 

fixed value of N = 0.50,  = - 0.20, ϒ = 1.00in air 
(Pr= 0.733). It is observed that the time taken to 
reach the steady state decreases with the increasing 
value of Q. Also, it is observed that the temperature 
distribution of the fluid increases with the increasing 
value of Q. 
 
The variation of transient velocity and temperature 
with variable viscosity for fixed values Pr = 7.00, N 
= 0.30, Q = 0.50 and ϒ = 1.00 are shown in figures 
7(a) and 7(b). It is observed that the time taken to 
reach the temporal maximum and steady state 
increases with the increasing value of variable 

viscosity parameter  of the fluid. From the 
numerical results, we observe that the velocity 
profile increases with the increasing value of 

variable viscosity parameter . 
 
The numerical values of variation of velocity and 

temperature profiles with N, for a fixed values of  
= 0.60, ϒ = 0.50, Q = 0.40 for water (Pr = 7.00) are 
shown graphically in figures 8(a) and 8(b). From 
these figures, it is observed that time taken to reach 
the steady state is more when the viscous dissipation 
parameter N increases. Additionally, it is noticed 
that the velocity Increase as Nincreases near to the 
vertical plate. The temperature of the fluid increases 
as the viscous dissipation parameter N increases. 
 
The variation of transient velocity and temperature 

with Prandtl’s numbers for fixed values  = 0.0, ϒ = 
0.80, N = 0.40 and Q = 0.60 are shown in figures 
9(a) and 9(b). It is observed that the time taken to 
reach the temporal maximum and steady state 
increases with the increasing value of Prandtl's 
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number parameter Pr of the fluid. From the 
numerical results, we observe that the velocity 
profile increases with the increasing value of 
Prandtl's number parameter Pr. Larger Prandtl’s 
number values give rise to thinner temperature 
profiles, because a larger Prandtl’s number value 
means that the thermal diffusion from the wall is not 
prevailing, whereas the velocity diffusion extends 
far from the wall. 
 
The variation of transient velocity and temperature 

with Heat Generation for fixed values of = 0.50, ϒ 
= 0.70, N = 0.80 and Pr = 7.00 are shown in figures 
10(a) and 10(b). It is observed that the time taken to 
reach the temporal maximum and steady state 
increases with the increasing value of Heat 
Generation of the fluid. From the numerical results, 
we observe that the velocity profile decreases with 
the increasing value of Heat Generation. 
 
The numerical values of the variation of transient 
velocity and temperature profiles with ϒfor a fixed 

value of  = 0.20, N = 0.40, Q = 0.60 in water (Pr = 
7.00) with the variation of thermal conductivity 
parameter ϒ are shown graphically in figures 11(a) 
and 11(b). From these figures, it is observed that the 
velocity and temperature distribution in the fluid 
increases as ϒincreases (thermal conductivity of air 

increases) for fixed value of , Q and Pr. 
 
In figures 12(a) & 12(b), the effects of variation 
parameters and Pron local skin friction and local 
Nusselt number shown respectively for air 
(Pr=0.733).  
 

The local skin-friction values are evaluated from 
equation (13) and plotted in figure. 12(a) as a 

function of the axial coordinate for air and water 

and selected values of the variation parameters   
and ϒ.  
 
 

The local skin-friction increases as increases. It is 
observed that local skin friction decreases with the 

increasing value of viscous variation parameter, . It 
is also observed that local wall shear stress increases 
with the increasing value of thermal conductivity 
parameter, ϒ. An increase in the value of Prandtl’s 
number, local skin friction is found to decrease. 
 
In figures 13(a) & 13(b), the effects of variation 
parameters and Pron average skin friction and 
average Nusselt number shown respectively air 
(Pr=0.733). Average values of skin friction are 
calculated numerically from the equation (14) and 
are shown graphically in figure 13(a) for various 
values of viscosity and thermal conductivity 
parameters for air and water. It increases with time 
and reaches the steady state after a certain time 
lapse.  
 
It is observed that average skin friction decreases 

with the increasing value of viscous parameter , 
viscous dissipation parameter and heat generation 
parameter Q. It is also observed that average wall 
shear stress increases with the increasing value of 
thermal conductivity parameter ϒ. An increase in the 
value of Prandtl’s number, average skin friction is 
found to decrease 

  
Figures 5(a) and 5(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless Y for different values of viscous dissipation parameter N with others fixed parameters. 
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Figures 6(a) and 6(b): Variation of dimensionless velocity profiles and temperature profiles against 
dimensionless Y for different values of heat generation parameter Qwith others fixed parameters. 

 
 
 

  
 

Figures 7(a) and 7(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless Y for different values of variable viscosity parameterwith others fixed parameters. 
 

 
 

  
 

Figures 8(a) and 8(b): Variation of dimensionless velocity profiles and temperature profiles against 
dimensionless Y for different values of viscous dissipation parameter Nwith others fixed parameters. 
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Figures 9(a) and 9(b): Variation of dimensionless velocity profiles and temperature profiles against 
dimensionless Y for different values of Prandtl's number parameter Pr with others fixed parameters. 

 
 
 

  
 

Figures 10(a) and 10(b): Variation of dimensionless velocity profiles and temperature profiles against 
dimensionless Y for different values of Heat generation Q with others fixed parameters. 

 
 
 

  
Figures 11(a) and 11(b): Variation of dimensionless velocity profiles and temperature profiles against 
dimensionless Y for different values of variable thermal conductivity parameter ϒ with others fixed 

parameters. 
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Figures 12(a) and 12(b): Variation of dimensionless local skin friction and local Nusselt number 

against dimensionless distance Xfor different values of Q, N, , ϒ and Pr=0.733 at steady state 
condition. 

  
Figure 13(a) and 13(b): Variation of dimensionless average skin friction and average Nusselt number 

against dimensionless distance X for different values of Q, N, , ϒ and Pr=0.733 at steady state 
condition. 

In figures 14(a) & 14(b), the effects of variation parameters and Pron average skin friction and average Nusselt 
number shown respectively water (Pr = 6.00). An increase in the Prandtl’s number lead to an increase in the 
average heat transfer rate, because increasing the Prandtl’s number speeds up the spatial decay of the temperature 
in the flow field, yielding an increase in the rate of heat transfer and also same manner for heat generation 

parameter. It is also observed that average Nusselt’s number decreases as  , ϒ and Q increases. 
 

 
 

Figures 14(a) and 14(b): Variation of dimensionless average skin friction and average Nusselt number 

against dimensionless distance Xfor different values of Q, N, , ϒ and Pr=6.00 at steady state 
condition. 
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Table-1: Comparing with Sarker & Alam [1] with our present work variation of dimensionless average skin 
friction against dimensionless distance x for different values of  λ, ϒ, N,Q and Pr at steady state condition. 
 
 

    X 

Present Sarker & 
Alam [1] 

Present Sarker & 
Alam [1] 

Present Sarker & Alam 
[1] 

            

0.000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.100 0.937118 0.937229 0.698397 0.698541 0.172387 0.172542 

0.200 1.311294 1.311428 0.951513 0.951672 0.246623 0.246775 

0.300 1.478617 1.478761 1.012385 1.012542 0.281298 0.281431 

0.400 1.539493 1.539658 1.057407 1.057552 0.337502 0.337653 

0.500 1.542151 1.542269 1.058812 1.058966 0.354635 0.354781 

0.600 1.545407 1.545538 1.059399 1.059541 0.365409 0.365541 

0.700 1.548513 1.548669 1.059066 1.059219 0.367399 0.367543 

0.800 1.551522 1.551649 1.065304 1.065432 0.369504 0.369651 

0.900 1.563286 1.563431 1.075506 1.075654 0.376838 0.376976 

1.000 1.567418 1.567568 1.079395 1.079543 0.378196 0.378341 

 
 
 
 
Table-2: Comparing with Sarker & Alam [1] with our present work variation of dimensionless average Nusselt 
number against dimensionless distance x for different values of  λ, ϒ, N, Q and Pr at steady state condition 
 
 

    X 

Present Sarker & 
Alam [1] 

Present Sarker & 
Alam [1] 

Present Sarker & Alam 
[1] 

Nuu Nuu Nuu Nuu Nuu Nuu 

0.100 1.587904 1.588063 1.463888 1.464049 1.247011 1.247155 

0.200 1.248188 1.248317 1.124058 1.124209 1.006288 1.006424 

0.300 1.082271 1.082422 0.982792 0.982951 0.859009 0.859157 

0.400 0.978511 0.978670 0.909585 0.909733 0.810115 0.810261 

0.500 0.936025 0.936176 0.855047 0.855205 0.749695 0.749834 

0.600 0.899734 0.899881 0.824974 0.825125 0.701701 0.701835 

0.700 0.875897 0.876031 0.777153 0.777298 0.672307 0.672460 

0.800 0.833955 0.834135 0.753689 0.753840 0.646032 0.646183 

0.900 0.816622 0.816781 0.730170 0.730319 0.636939 0.637093 

1.000 0.793282 0.793417 0.718861 0.719022 0.625912 0.626063 
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The comparison of the average skin friction and 
average Nusselt number between the present work 
and the work of Sarker & Alam [5] are presented in 
Table 1 and 2 respectively. We observe that the 
comparison is similar to the previous work. Our 
results are very similar to theirs. 
 

V. Conclusion 
The influence of changing viscosity and thermal 
conductivity on heat generation laminar natural 
convection boundary-layer flow along a vertical 
plate with pressure work is analyzed in this work. 
The thermal conductivity is assumed to be a linear 
function of temperature and the fluid viscosity is 
expected to fluctuate as an exponential function. An 
implicit Crank-Nicolson type finite difference 
approach is used to solve the dimensionless 
governing equations. Graphically, a comparison is 
drawn between the current numerical findings and 
previously published research. The agreement 
between the two parties is seen to be great. The 
present analysis has shown that: 
 
(i) Reduced temperature and increased viscosity 

parameter  cause a fluid to speed up. Whenever the 

viscosity variation parameter  is large, the Nusselt 
number and skin friction are both raised, causing a 
boost in velocity near the wall. 
 
(ii) As the thermal conductivity parameter ϒ grows, 
the fluid velocity, fluid temperature, dimensionless 
wall velocity gradient, and dimensionless heat 
transfer rate from the plate to the fluid all rise. 
 
(iii) Ignoring viscosity and thermal conductivity 
differences leads to considerable errors. Thus, to 
predict more precise results, viscosity and heat 
conductivity must be considered. 
 
(iv) Increasing the viscous dissipation parameter N 
moderately raises the velocity profiles. 
Additionally, a higher temperature profile is 
observed with higher values of the viscous 
dissipation parameter. 
 
(v) For both the velocity and temperature 
distributions, a rise in the heat generation parameter 
Q results in substantial improvements. 
 

(vi) The local skin friction coefficient, the local 
Nusselt number, and the velocity distribution over 
the entire boundary layer all decrease, while the 
temperature distribution increases. This is because 
the temperature distribution is independent of the 

other variables (Q, N, , and ϒ) that affect heat 
generation and dissipation, respectively. 
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