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AN ENTIRE FUNCTION SHARING A LINEAR POLYNOMIAL WITH ITS

LINEAR DIFFERENTIAL POLYNOMIALS.

IMRUL KAISH AND GOUTAM KUMAR GHOSH

Abstract. In this paper we study the uniqueness of an entire function when it shares a linear

polynomial with its linear differential polynomials.

1. Introduction, Definitions and Results

Let f be a noncostant meromorphic function defined in the open complex plane C. The integrated
counting function of poles of f is defined by

N(r,∞; f) =

∫ r

0

n(t,∞; f)− n(0,∞; f)

t
dt+ n(0,∞; f) log r,

where n(t,∞; f) be the number of poles of f lying in |z| ≤ r, the poles are counted according to their
multiplicities and n(0,∞; f) be the multiplicity of pole of f at origin.

For a polynomial a = a(z), N(r, a; f) (N(r, a; f)) be the integrated counting function (reduced
counting function) of zeros of f − a in |z| ≤ r.

Let A ⊂ C, we denote by nA(r, a; f) the number of zeros of f − a, counted with multiplicities, that
lie in {z : |z| ≤ r} ∩A. The corresponding integrated counting function NA(r, a; f) is defined by

NA(r, a; f) =

∫ r

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r.

We also denote by NA(r, a; f) the reduced counting functions of those zeros of f − a that lie in
{z : |z| ≤ r} ∩A.

Clearly if A = C, then NA(r, a; f) = N(r, a; f) and NA(r, a; f) = N(r, a; f).
We denote by E(a, f) the set of zeros of f − a counted with multiplicities and by E(a, f) the set of

distinct zeros of f − a.
For the standard definitions and notations of the value distribution theory authors suggest to see

[1] and [8]
The investigation of uniqueness of an entire function sharing certain values with its derivatives was

initiated by L. A. Rubel and C. C. Yang [7] in 1977. They proved the following result.

Theorem A. [7]. Let f be a non-constant entire function. If E(a; f) = E(a; f (1)) and E(b; f) =
E(b; f (1)), for distinct finite complex numbers a and b, then f ≡ f (1).

In 1979 E.Mues and N.Steinmetz [6] took up the case of IM sharing in the place of CM sharing of
values and proved the following theorem.

Theorem B. [6]. Let f be a non-constant entire function and a, b be two distinct finite complex
values and . If E(a; f) = E(a; f (1)) and E(b; f) = E(b; f (1)), then f ≡ f (1).

The uniqueness of an entire function sharing a nonzero finite value with its first two derivatives
was considered by G. Jank, E. Mues and L. Volkmann [2] in 1986. The following is their result.

Theorem C. [2]. Let f be a nonconstant entire function and a be a nonzero finite value. If E(a; f) =
E(a; f (1)) ⊂ E(a; f (2)), then f ≡ f (1).
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Considering f = eωz +ω− 1 and a = ω, where ω is a (k− 1)th imaginary root of unity and k(≥ 3)
is an integer, H. Zhong [9] pointed out that in Theorem A one cannot replace the second derivative
by any higher order derivative. Under this context H. Zhong [9] proved the following theorem.

Theorem D. [9]. Let f be a non-constant entire function and a be a nonzero finite number. If
E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (n)) ∩ E(a; f (n+1)) for n(≥ 1), then f ≡ f (n).

I. Lahiri and I. Kaish [3] improved Theorem D by considering a shared polynomial. They proved
the following theorem.

Theorem E. [3]. Let f be a non-constant entire function and a = a(z)( ̸≡ 0) be a polynomial
with deg(a) ̸= deg(f). Suppose that A = E(a; f)∆E(a; f (1)) and B = E(a; f (1))\{E(a; f (n)) ∩
E(a; f (n+1))}, where ∆ denotes the symmetric difference of sets and n(≥ 1) is an integer.

If

(i) NA(r, a; f) +NA(r, a; f
(1)) = O{log T (r, f)},

(ii) NB(r, a; f
(1)) = S(r, f), and

(iii) each common zero of f − a and f (1) − a has the same multiplicity,

then either f = λez, where λ( ̸= 0) is a constant.

Throughout the paper we denote by L a nonconstant linear differential polynomial in f of the form

L = a1f
(1) + a2f

(2) + · · ·+ anf
(n), (1.1)

where a1, a2, . . . , an( ̸= 0) are constants.
In 1999 P. Li [5] considered linear differential polynomials and proved the following result.

Theorem F. [5]. Let f be a nonconstant entire function and L be defined by (1.1) and a(̸= 0) be a
finite number. If E(a; f) = E(a; f (1)) ⊂ E(a;L) ∩ E(a;L(1)), then f ≡ f (1) ≡ L.

Considering a shared linear polynomial, we establish the following theorem which is our main result
in the paper.

Theorem 1.1. Let f be a nonconstant entire function, a = a(z) = αz + β, where α(̸= 0), β are
constants and k(≥ 1) be an integer. Further suppose that L defined by (1.1) be such that L(k+1) is
nonconstant and

(i) NA(r, a; f) +NA(r, a; f
(1)) = O{log T (r, f)}, where A = E(a; f)∆E(a; f (1));

(ii) NB(r, a; f
(1)) = S(r, f), where B = E(a; f (1))\{E(a;L(k)) ∩ E(a;L(k+1))} ;

(iii) each common zero of f − a and f (1) − a has the same multiplicity.

Then f = L = λez, where λ(̸= 0) is a constant.

Putting A = B = Φ, we obtain the following corollary.

Corollary 1.1. Let f be a nonconstant entire function, a = a(z) = αz + β, where α(̸= 0), β are
constants and k(≥ 1) be an integer. Further suppose that L defined by (1.1) be such that L(k+1) is
nonconstant and

E(a; f) = E(a; f (1)), E(a; f (1)) ⊂ {E(a;L(k)) ∩ E(a;L(k+1))}.
Then f = L = λez, where λ(̸= 0) is a constant.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. [3]. Let f be transcendental entire function of finite order and a = a(z)( ̸≡ 0), be a
polynomial and A = E(a; f)∆E(a; f (1)).

If

(i) NA(r, a; f) +NA(r, a; f
(1)) = O{log T (r, f)},

(ii) each common zero of f − a and f (1) − a have the same multiplicity,

then m(r, a; f) = m(r, 1
f−a ) = S(r, f).
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Lemma 2.2. Let f be a transcendental entire function, a = a(z) = αz + β, where α(̸= 0), β are
constant and L defined by (1.1) be such that L(k+1) is nonconstant. Further suppose that

h = (a−a(1))L(k)−a(f(1)−a(1))
f−a

and A = E(a; f)\E(a; f (1))
B = E(a; f (1))\{E(a;L(k)) ∩ E(a;L(k+1))}, k(≥ 1) be an integer.

If

(i) NA(r, a; f) +NB(r, a; f
(1)) = S(r, f),

(ii) each common zero of f − a and f (1) − a has the same multiplicity,
(iii) h is transcendental entire or meromorphic function,

then m(r, a; f (1)) = m(r, 1
f(1)−a

) = S(r, f).

Proof. From the hypothesis we get

N(r, h) ≤ NA(r, a; f) +NB(r, a; f
(1)) +N(2(r, a; f) + S(r, f)

= N(2(r, a; f) + S(r, f), (2.1)

where N(2(r, a; f) is the counting function of multiple zeros of f − a.

Let z0 is a common zero of f − a and f (1) − a with multiplicity q(≥ 2), then z0 is a zero of
a− a(1) = (f (1) − a(1))− (f (1) − a) with multiplicity q − 1.

So

N(2(r, a; f) ≤ 2N(r, 0; a− a(1)) +NA(r, a; f) = S(r, f),

Therefore from (2.1) we get N(r, h) = S(r, f).
Since m(r, h) = S(r, f), we have T (r, h) = S(r, f).
Now by a simple calculation we get
f = a+ 1

h{(a− a(1))(L(k) − a)− a(f (1) − a)}.
Differentiating we obtain
f (1) = a(1) + ( 1h )

(1){(a− a(1))(L(k) − a)− a(f (1) − a)}
+ ( 1h ){a

(1)(L(k) − a) + (a− a(1))(L(k+1) − a(1))− a(1)(f (1) − a)− a(f (2) − a(1))}.
That is,

(f (1) − a)
{
1 + (

a

h
)(1)

}
= (a(1) − a) +

(
a− a(1)

h

)(1)

(L(k) − a)

+

(
a− a(1)

h

)
(L(k+1) − a(1))−

(a
h

)
(f (2) − a(1)). (2.2)

Case 1:
First we suppose k = 1. Then from (2.2) we get

(f (1) − a)
{
1 + (

a

h
)(1)

}
= (a(1) − a) +

(
a− a(1)

h

)(1)

(L(1) − a) +

(
a− a(1)

h

)
(L(2) − a(1))

−
(a
h

)
(f (2) − a(1))

= (a(1) − a) +

(
a− a(1)

h

)(1)

(a1a
(1) − a) +

(
a− a(1)

h

)(1)

(L(1) − a1a
(1))

+

(
a− a(1)

h

)
L(2) −

(
a− a(1)

h

)
a(1) −

(a
h

)
(f (2) − a(1)).

This implies



4 I. KAISH & G. K. GHOSH

1

f (1) − a
=

ζ

η
− 1

η

(
a− a(1)

h

)(1)
L(1) − a1a

(1)

f (1) − a
− a− a(1)

hη
· L(2)

f (1) − a

+
a

hη
· f

(2) − a(1)

f (1) − a
, (2.3)

where ζ = 1 +
(
a
h

)(1)
and η = (a(1) − a) +

(
a−a(1)

h

)(1)

(a1a
(1) − a)−

(
a−a(1)

h

)
a(1).

We now verify that ζ ̸≡ 0 and η ̸≡ 0. If ζ ≡ 0, then 1 + ( ah )
(1) ≡ 0. Integrating we get h = a

d−z ,
where d is a constant, and this implies a contradiction as h is transcendental.

If η ≡ 0, then

(a(1) − a) +
(

a−a(1)

h

)(1)

(a1a
(1) − a)−

(
a−a(1)

h

)
a(1) ≡ 0

Integrating we get

h = P (z)
Q(z) , where P (z) and Q(z) are polynomials of degree 2, which is a contradiction as h is

transcendental.
Since clearly T (r, ζ) + T (r, η) = S(r, f), from (2.3) we get m(r, a; f (1)) = m(r, 1

f(1)−a
) = S(r, f).

Case 2:
Next we suppose k > 1. Then from (2.2) we get

(f (1) − a)
{
1 + (

a

h
)(1)

}
= (a(1) − a)−

(
a(a− a(1))

h

)(1)

+

(
a− a(1)

h

)(1)

L(k)

+

(
a− a(1)

h

)
L(k+1) −

(a
h

)
(f (2) − a(1))

This implies

1

f (1) − a
=

ζ

η1
− 1

η1

(
a− a(1)

h

)(1)
L(k)

f (1) − a
− a− a(1)

hη1
· L(k+1)

f (1) − a

+
a

hη1
· f

(2) − a(1)

f (1) − a
, (2.4)

where ζ = 1 +
(
a
h

)(1)
and η1 = (a(1) − a)−

(
a(a−a(1))

h

)(1)

.

In case 1 we see that ζ ̸≡ 0. We now verify that η1 ̸≡ 0. If η1 ≡ 0, then

(a(1) − a)−
(

a(a−a(1))
h

)(1)

≡ 0.

Integrating we get, h = P1(z)
Q1(z)

, where P1(z) and Q1(z) are polynomials of degree 2, which is a

contradiction as h is transcendental.
Since clearly T (r, ζ) + T (r, η1) = S(r, f), from (2.4) we get m(r, a; f (1)) = m(r, 1

f(1)−a
) = S(r, f).

This proves the lemma. □

Lemma 2.3. Let f be a transcendental entire function, a = a(z) = αz + β, where α( ̸= 0), β are
constants and k(≥ 1) be an integer. Further suppose that L defined by (1.1) be such that L(k+1) is
nonconstant and

(i) NA(r, a; f) +NA(r, a; f
(1)) = S(r, f), where A = E(a; f)∆E(a; f (1));

(ii) NB(r, a; f
(1)) = S(r, f), where B = E(a; f (1))\{E(a;L(k)) ∩ E(a;L(k+1))} ;

(iii) each common zero of f − a and f (1) − a has the same multiplicity;
(iv) m(r, a; f) = S(r, f).

Then f = L = λez, where λ(̸= 0) is a constant.

Proof. Let

ϕ =
f (1) − a

f − a
. (2.5)
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By the hypotheses, N(r, ϕ) ≤ NA(r, a; f) + S(r, f) = S(r, f) and

m(r, ϕ) = m

(
r,
f (1) − a(1) + a(1) − a

f − a

)
≤ m(r, a; f) + S(r, f) = S(r, f).

Therefore T (r, ϕ) = S(r, f). Now from (2.5) we get

f (1) = µ1 + ν1f, (2.6)

where µ1 = a(1− ϕ) and ν1 = ϕ.
Differentiating (2.6) and using it again, we get

f (2) = µ2 + ν2f, (2.7)

where µ2 = µ
(1)
1 + ν1µ1 and ν2 = ν

(1)
1 + ν1ν1.

Differentiating (2.7) and using (2.6) we get

f (3) = µ3 + ν3f,

where µ3 = µ
(1)
2 + µ1ν2 and ν3 = ν

(1)
2 + ν2ν1.

In general, we obtain

f (j) = µj + νjf, (2.8)

where µj+1 = µ
(1)
j + µ1νj and νj+1 = ν

(1)
j + ν1νj for j = 1, 2, 3, . . ..

Clearly T (r, µj)+T (r, νj) = S(r, f) for j = 1, 2, 3, . . .. Let z0 be a pole of ϕ with multiplicity p(≥ 2).
Then z0 is a pole of ν2 with multiplicity max{2p, p + 1} = 2p and is a pole of ν3 with multiplicity
max{3p, 2p+1} = 3p. In general, z0 is a pole of νj+1 with multiplicity max{(j+1)p, jp+1} = (j+1)p.

Now

L(k) =

n∑
j=1

ajf
(j+k) =

n∑
j=1

ajµj+k +

 n∑
j=1

ajνj+k

 f = ξ + χf, say. (2.9)

Clearly T (r, ξ) + T (r, χ) = S(r, f). Differentiating (2.9) we obtain

L(k+1) = ξ(1) + χ(1)f + χf (1). (2.10)

Let E∗ = E(a; f) ∩ E(a; f (1)) ∩ E(a;L(k)) ∩ E(a;L(k+1)). We note that E∗ ̸= ∅ because otherwise
N(r, a; f) = S(r, f), a contradiction. If z1 ∈ E∗, then from (2.9) and (2.10) we get

ξ(z1) + χ(z1)a(z1) = a(z1) (2.11)

and

ξ(1)(z1) + χ(1)(z1)a(z1) + χ(z1)a(z1) = a(z1). (2.12)

We put γ = ξ + χa − a and δ = ξ(1) + χ(1)a + χa − a. Then T (r, γ) + T (r, δ) = S(r, f). If γ ̸≡ 0,
then from (2.11) we get NE∗(r, a; f) = NE∗(r, a; f) ≤ N(r, 0; γ) = S(r, f). Now

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f
(1)) +NE∗(r, a; f) + S(r, f)

= S(r, f)

and by hypothesis T (r, f) = S(r, f), a contradiction. So γ ≡ 0. Similarly we can show that δ ≡ 0.
This implies that ξ ≡ 0 and χ ≡ 1. From (2.9) we get f ≡ L(k).

Also

n∑
j=1

ajνj+k ≡ 1 and an ̸= 0 imply that ϕ has no pole. For, otherwise the left hand side would

have some pole while the right hand side is a constant, a contradiction.

Further from

n∑
j=1

ajνj+k ≡ 1 we get

anϕ
n+k + P [ϕ] ≡ 0, (2.13)

where P [ϕ] is a differential polynomial in ϕ with degree not exceeding n+ k − 1.
If ϕ is a transcendental entire function, then by Clunie’s lemma we have m(r, ϕ) = S(r, ϕ), a

contradiction. If ϕ is a nonconstant polynomial, then the left hand side of (2.13) is a nonconstant
polynomial, which is impossible. Therefore ϕ is a constant and we get
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f (1) − a = ϕ(f − a), i.e., f (1) − ϕf = a(1− ϕ), i.e.,
df

dz
− ϕf = (αz + β)(1− ϕ).

This implies
d

dz
(e−ϕzf) = e−ϕz(αz + β)(1− ϕ) and so on integration we obtain

e−ϕzf =
a(ϕ− 1)

ϕ
e−ϕz(a+

α

ϕ
) + c,

i.e.,

f =
ϕ− 1

ϕ
+ λeϕz,

where λ(̸= 0) is a constant.
Therefore

L(k) =

n∑
j=1

ajf
(j+k) =

 n∑
j=1

ajϕ
j+k

λeϕz

=

 n∑
j=1

ajνj+k

λeϕz = λeϕz =
f (1)

ϕ
− ϕ− 1

ϕ2

(
a+

α

ϕ

)
. (2.14)

Since E∗ ̸= ∅, we have f(z2) = f (1)(z2) = L(k)(z2) = L(k+1)(z2) = a(z2) for some z2 ∈ E∗.
Then from (2.14) we get

a(z2) =
a(z2)
ϕ − ϕ−1

ϕ2

(
a(z2) +

α
ϕ

)
. By simple calculation we get (ϕ− 1){(ϕ+ 1)a(z2 + α} = 0

If ϕ ̸= 1, then {(ϕ+ 1)a(z2) + α} = 0 and by the hypothesis we get NE∗(r, a; f) = NE∗(r, a; f) ≤
N(r, 0; {(ϕ+ 1)a+ α}) = S(r, f). Now

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f
(1)) +NE∗(r, a; f) + S(r, f)

= S(r, f)

and by hypothesis T (r, f) = S(r, f), a contradiction.
Therefore ϕ = 1 and L(k) ≡ f ≡ λez.
Now we have

λez = L(k) =

n∑
j=1

ajf
(j+k) =

 n∑
j=1

aj

λez and so

n∑
j=1

aj = 1.

Therefore L =

n∑
j=1

ajf
(j) =

 n∑
j=1

aj

λez = λez. This proves the lemma. □

Lemma 2.4. {p.58 [7]}. Each solution of the differential equation

anf
(n) + an−1f

(n−1) + · · ·+ a0f = 0,

where a0( ̸≡ 0), a1, · · · , an( ̸≡ 0) are polynomials, is an entire function of finite order.

Lemma 2.5. { p.47 [1] }. Let f be a nonconstant meromorphic function and a1, a2, a3 be three
distinct meromorphic functions satisfying T (r, aν) = S(r, f) for ν = 1, 2, 3.

Then T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

3. Proof of The Theorem

First we claim that f is a transcendental entire function. If f is a polynomial, then T (r, f) =
O(log r) and NA(r, a; f) + NA(r, a; f

(1)) = O(log r). Then from the hypothesis we get O(log r) =
O(log T (r, f)) = S(r, f), which implies T (r, f) = S(r, f), a contradiction. Therefore A = ∅. Similarly,
NB(r, a; f

(1)) = S(r, f) implies B = ∅.
Therefore E(a; f) = E(a; f (1)) and E(a; f (1)) ⊂ E(a, L(k)) ∩ E(a;L(k+1)).
First we suppose degree of f be 1 and we consider f(z) = Az +B, where A(̸= 0), B are constants.

Then f (1) = A and L(k) ≡ L(k+1) ≡ 0. Now A−β
α is the only zero of f (1) − a and −β

α is the only zero

of L(k) − a. So E(a; f (1)) ⊂ E(a, L(k)) implies that A−β
α = −β

α and so A = 0, a contradiction.
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Next we suppose that the degree of f be greater than 1. Then deg(f − a) > deg(f (1) − a). Since
each common zero of f − a and f (1) − a has the same multiplicity, this contradicts the fact that
E(a; f) = E(a; f (1)).

Therefore our claim ’f is a transcendental entire function’ is established.
We note that a common zero of f − a and f (1) − a of multiplicity q(≥ 2) is a zero of a − a(1) =

(f (1) − a(1))− (f (1) − a) with multiplicity q − 1(≥ 1). Therefore

N(2(r, a; f
(1)|f = a) ≤ 2N(r, 0; a− a(1)) = S(r, f),

whereN(2(r, a; f
(1)|f = a) denotes the counting function (counted with multiplicities) of those multiple

zeros of f (1) − a, which are also zeros of f − a.
Now

N(2(r, a; f
(1)) ≤ NA(r, a; f

(1)) +NB(r, a; f
(1)) +N(2(r, a; f

(1)|f = a) + S(r, f)

= N(2(r, a; f
(1)|f = a) + S(r, f)

= S(r, f), (3.1)

where N(2(r, a; f
(1)) denotes the counting function (counted with multiplicities) of multiple zeros of

f (1) − a.
Case 1: Let L(k) ≡ L(k+1) ≡ f (1).
Then L(k) = L(k+1) = f (1) = λez, where λ(̸= 0) is a constant.
Therefore f = λez + t, where t is a constant.
By Lemma 2.5 we get

T (r, λez) ≤ N(r, 0;λez) +N(r,∞;λez) +N(r, a− t;λez) + S(r, λez)

= N(r, a; f) + S(r, λez),

which implies N(r, a; f) ̸= S(r, f). Again since NA(r, a; f)+NB(r, a; f
(1)) = S(r, f), we get E(a; f)∩

E(a; f (1)) ̸= ∅, otherwise N(r, a; f) ̸= S(r, f) . This implies t = 0 and so f = L(k).

Now m(r, a; f) ≤ m(r, a
f−a + 1) + S(r, f) = m(r, f

f−a ) + S(r, f) = m(r, L(k)

f−a ) + S(r, f) = S(r, f)

Therefore by Lemma 2.3 we get f = L = λez, where λ(̸= 0) is a constant.
Case 2: Let L(k+1) ̸≡ f (1). Then using (3.1) we get by the hypothesis

N(r, a; f (1)) ≤ NB(r, a; f
(1)) +N(r,

a

a− α
;
L(k+1)

f (1) − α
) + S(r, f)

≤ T (r,
L(k+1)

f (1) − α
) + S(r, f)

= N(r,
L(k+1)

f (1) − α
) + S(r, f)

≤ N(r, α; f (1)) + S(r, f). (3.2)

Again

m(r, a; f) ≤ m(r,
f (1) − α

f − a
· 1

f (1) − α
)

≤ m(r, α; f (1)) + S(r, f)

= T (r, f (1))−N(r, α; f (1)) + S(r, f)

= m(r, f (1))−N(r, α; f (1)) + S(r, f)

≤ m(r, f)−N(r, α; f (1)) + S(r, f)

= T (r, f)−N(r, α; f (1)) + S(r, f)

i.e., N(r, α; f (1)) ≤ N(r, a; f) + S(r, f).
So from (3.2) we get

N(r, a; f (1)) ≤ N(r, a; f) + S(r, f). (3.3)
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Again

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f (1) | f = a)

≤ N(r, a; f (1)) + S(r, f). (3.4)

Therefore from (3.3) and (3.4) we get

N(r, a; f (1)) = N(r, a; f) + S(r, f). (3.5)

Let h, defined as in Lemma 2.2, be transcendental. Then

T (r, f) = m(r, f) = m(r,
1

h
{(a− a(1))(L(k) − a)− a(f (1) − a)}) + S(r, f)

≤ m(r,
1

h
{(a− a(1))L(k) − af (1)}) + S(r, f)

≤ m(r, f (1)) + S(r, f)

= T (r, f (1)) + S(r, f)

= m(r, f (1)) + S(r, f)

≤ m(r, f) + S(r, f)

= T (r, f) + S(r, f).

Therefore

T (r, f (1)) = T (r, f) + S(r, f). (3.6)

Again by Lemma 2.2 we get m(r, a; f (1)) = S(r, f).
Then from (3.5) and (3.6) we get m(r, a; f) = S(r, f).
Next we suppose that h is rational. Then by Lemma 2.4 we see that f is of finite order.
So by the hypothesis and Lemma 2.1 we get m(r, a; f) = S(r, f).
Therefore by Lemma 2.3 we get f = L = λez, where λ(̸= 0) is a constant.
Case 3: Finally let L(k+1) ̸≡ L(k).
Then by the hypothesis and (3.1) we get

N(r, a; f (1)) ≤ NB(r, a; f
(1)) +N(r, 1;

L(k+1)

L(k)
) + S(r, f)

≤ T (r,
L(k+1)

L(k)
) + S(r, f)

= N(r,
L(k+1)

L(k)
) + S(r, f)

= N(r, 0;L(k)) + S(r, f). (3.7)

Again

m(r, a; f) = m(r,
L(k)

f − a
· 1

L(k)
)

≤ m(r, 0;L(k)) + S(r, f)

= T (r, L(k))−N(r, 0;L(k)) + S(r, f)

= m(r, L(k))−N(r, 0;L(k)) + S(r, f)

≤ m(r,
L(k)

f
) +m(r, f)−N(r, 0;L(k)) + S(r, f)

= m(r, f)−N(r, 0;L(k)) + S(r, f)

= T (r, f)−N(r, 0;L(k)) + S(r, f)

and so
N(r, 0;L(k)) ≤ N(r, a; f) + S(r, f). Now by (3.7) we get

N(r, a; f (1)) ≤ N(r, a; f) + S(r, f). (3.8)
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Also

N(r, a; f) ≤ NA(r, a; f) +N(r, a; f (1) | f = a)

≤ N(r, a; f (1)) + S(r, f). (3.9)

From (3.8) and (3.9) we get N(r, a; f (1)) = N(r, a; f) + S(r, f), which is (3.5).
Now as in Case 2, by Lemma 2.1, Lemma 2.2, Lemma 2.4 and (3.5) we obtain m(r, a; f) = S(r, a; f).
Then by Lemma 2.3 we get f = L = λez, where λ(̸= 0) is a constant.
This proves the theorem.
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