

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 7 Issue 5 ǁ May 2022.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 13

Autosar Compliant Model-Based Static

Resource Analyzer

Berkay Saydam

TTTech Auto Turkey;R&D Centre; Izmir, Turkey;

Abstract: As the automotive industry is a highly dynamic and aggressive market, a short period of time can

determine whether a new model will be successful or not. The main focus is frequent delivery of customer value

and a quicker response to changing conditions. There are too much iterations between OEM and Tier 1 because

of not having knowledge about hardware restrictions on OEM side in spite of AUTOSAR and Model-based

design. It signifies us to AUTOSAR can not provide totally independency between OEM and Tier 1 while it

provides abstraction between software and hardware.The motivation of this article is that there is no any

compliant studies for automotive industry even though there is for embedded systems.Automotive industry has

different dynamics, therefore our tool is thought beyond the box. Resource analyzer removes these time-

consuming iterations via analysing current OEM design. Thus, OEM does not consume resource and time to

have this knowledge from Tier 1. Besides, the current system can be analysed to make a decision future SWCs

and detected the most consuming SWCs in the system.

Keywords: AUTOSAR Workflow, Model-based Design, Static Analyzer, Independency on Design.

I. INTRODUCTION

In 2012, the value of cost for the development of

electronics in vehicles was expected 35% of the

vehicle production costs in 2015 [1]. According to

the study [2], the cost was almost tripled for the

development of electronic systems in 2015.

Modern cars have above 100 ECUs (Electronic

Control Units) and 100M lines of code by 2015 [3].

Code complexity climbs exponentially and it is

expected to over 650M lines of code by 2025 [4].

Abstraction of hardware from software is provided

by AUTOSAR (AUTomotive Open System

Architecture), however there is no completely

independency between OEM (Original Equipment

Manufacturer) and Tier1 (supplier) companies.

Embedded systems have limitations, therefore

designers of OEM should contact with developers

of Tier1 to betested model according to limitations.

Model-based design saved time with bringing easy

modification on design via model approach.

Despite all, there are many iterations on model

because of not having knowledge about hardware

resource limitation on OEM side. These iterations

cause too much cost because they causes to give

the product to market lately.

The overflow of storage and computationcan be

seen in release phase, but this phase is too late to

handle this situation. Because this situation requires

to modelling againby OEM. Since the automotive

industry is a highly dynamic and aggressive

market, there is a short time. Storage and

computation consumption of present model are

produced via the tool. OEM designer can check

their model in software component design phase

with our tool.Thus, wasting iteration times is

removed and there is independency between OEM

and Tier1 in AUTOSAR workflow.

In this article, the reason of the requirement of

standardized software architecture and AUTOSAR,

which is a proper software architecture, are given

in chapter 2. There is detailed information about

model-based software development as

complementary of AUTOSAR in chapter 3. Our

tool is introduced in next chapter. The last section

is conclusion which includes the benefits of tool.

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 7 Issue 5 ǁ May 2022.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 14

II. REQUIREMENT OF STAND ARDIZED

SOFTWARE ARCHITECTURE

The steady growth in the number of features and

ECUs caused the complexity on E/E

(Electrics/Electronics). Quantity of software have

been rising in parallel with this [5]. Many kind of

different hardware platforms are used by OEM. It

limited the modularity of the software. Supplier

have to support all OEM variants with their

software. Reusability of the software was very low

because there is no standardization between

variants. This brought to mind the idea of a

requirement of standardized software architecture.

2.1 AUTOSAR Partnership/Framework

AUTOSAR is a worldwide partnership which has

“Cooperate on standards – compete on

implementation” slogan [6]. The main goal of

AUTOSAR is providing the reusability of pre-

validated software components with reuse existing

functions in different hardware. It provides

abstraction of hardware from software to bring

flexibility in development. It aims the improvement

of software quality via changing process from

implementation to configuration. It enhances the

whole product life cycle with providing

maintainability and the availability of upgrades

over the entire life of a vehicle. In conclusion,

competition is proceeded onto OEM-relevant

features and resources are used for improving

software quality instead of spending unnecessary

time for implementation repeatedly.

2.2 AUTOSAR Workflow

In the automotive industry, companies make

development cycles get shorter with continuous

integration and delivery.Agile software

management methods are also used fast release-

cycles to give response the market

needs.AUTOSAR arising from component-based

software engineering where a system is divided

into a number of software components each of

which encapsulates a set of related functions which

are called runnable entities. The interfaces of the

software-components are designed and the software

components are mapped to ECUs. The result is a

system description which includes the interface of

such components and is given to the supplier who

implements the behavior of the software

components, performs the mapping of runnables to

OS tasks, and configure the basic software modules

like the communication stack.Afterwards, the

software is compiled, built, and flashed to an ECU.

Figure 1: The relation between OEM and Tier-1

In the first step of AUTOSAR workflow, a

software component is modeled in ARXML

(AutosaR XML) format on VFB (Virtual

Functional Bus) level [7]. It is called Software

Component Description which includes operations

and data elements provided and required,

requirements regarding the infrastructure, resources

needed and also information regarding the specific

implementation.The communication between

Software Components on System Level is

modelled with the help of the concept of the VFB.

System description is obtained with mapping

SWCs (Software Components) to ECUs in the

second step. An extract is created in ARXML

format for each ECU.This is the output of OEM to

give Tier1. Tier1 takes this description file as input

and integrating and configuring one ECU’s

software are done according to the specifications.

The steps of AUTOSAR workflow is given in
Figure 2.

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 7 Issue 5 ǁ May 2022.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 15

Figure 2: AUTOSAR Workflow (Methodology)

III. MODEL-BASED SOFTWARE

DEVELOPMENT

Model-Based Design is a paradigm to solve

complexity on a functional level while AUTOSAR

is focusing on the software and communication

aspects between AUTOSAR software components

and the decoupling of the application and the Basic

Software layer. Model-Based Design and

AUTOSAR are not only compatible, but they are

complementary. The combination of both is an

excellent way to improve the cooperation between

system engineers and design engineers as well as

the collaboration between OEMs and suppliers.

Traditional embedded software development

involves paper designs and hand coding followed

by verification activities. These activities involve

manual interaction because of lacking tool

automation. Therefore, they are error prone and

time consuming. Lack of tool chain causes errors to

be found in the software which are often detected

late and at high costs to the development process.

Model-Based Design aims error prevention and

early error detection. It gives opportunity to detect

error earlier in a project. The software is

automatically generated from the models during

production codegeneration. If the continuous

verification and validation process discovers errors,

they will be fixed within the model and the

software can be regenerated very quickly and

efficiently. Model-Based Design enables teams to

complete important tasks much earlier than in a

traditional approach. At the same time it enhances

the quality of the complete design process, because

it avoids time and cost intensive iterations if errors

are found at the very end.

In brief, Model-Based Design provides these

benefits:

 Continuous test and verification to detects

errors earlier

 Automatic code generation to minimize

manual error prone coding

 Designing with simulation to create

prototype

 Executable specifications to facilitate

communication between OEM and

supplier

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 7 Issue 5 ǁ May 2022.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 16

IV. IMPLEMENTATION

The tool takes ARXML files for each host as

inputs. The outputs are xlsx format for each host to

being readable by human.The tool system can be

summarized like Figure 3.

Figure 3: System block diagram

Our tool takes SWCs, preferred type of

communication between SWCs, data type which is

used in these communications and so on from these

ARXML files. Resource Analyzer estimates RAM

(Random Access Memory) and ROM (Read-Only

Memory) allocations which will be done by RTE

(Run-Time Environment) according to generic

calculations. It gives readable table which has

statistics as Figure 4.

Figure 4: The report of Resource Analyzer

The report of our tool can be examined some

different perspectives such as memory

consumption, runnable and SWC. The SWCs,

which consume too much memory or CPU (Central

Processing Unit), can be detected with our tool.

This process can be applied for runnables, which

are found in SWCs, via SWC Analyze sheet in the

report.

V. CONCLUSION

With our tool, OEM can design its model without

having any dependency. It can check the model

runnable by runnable. Some runnables or SWCs,

which are consumes too much resource, can be

removed or optimized after checking the report of

resource analyzer. The decisions can be made for

the future functionalities in research and

development phase with checking current model

consumptions. The overflow of resource can be

detected in the earliest phase.

The visualisation of present values can be future

study for this tool. Besides, some artificial

intelligent algorithms can be added to give

recommendation to designer for having the best

model which has the lowest storage and CPU

usage. This also reduces time spentand designer

effort and provides opportunity to have the best

model.

 w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 17

REFERENCES

[1] M. Brou, S. Kirstan, H. Krcmar and B.

Schartz, “What is the benefit of a model-

based design of embedded system in the

car industry?” Emerging Technologies for

the Evolutin and Maintenance of Software

Models, pp.343-369, 2012.

[2] Franco, F.R., et al: Workflow and

Toolchain for Developing the Automotive

Software According AUTOSAR Standard

at a Virtual-ECU. IEEE 25th International

Symposium on Industrial Electronics

(ISIE), pp. 869-875, 2016.

[3] Open standards enable continuous

software development in the automotive

industry

[4] R. McOuat, Cars are made of code, 2020

(accessed August27, 2021).[Online].

Available:

https://blog.nxp.com/automotive/cars-

aremade-of-code.

[5] Mullangi Divyakanth, Why AUTOSAR,

2019 (accessed July 23, 2021).[Online].

Available:

https://assets.vector.com/cms/content/even

ts/2019/VH/VIC2019/Track_4_1_Why_A

UTOSAR.pdf

[6] https://www.autosar.org/. [Online].

Available:https://www.autosar.org/about/.

[Accessed: 02- Jun- 2021].

[7] Leoš Mikulka, “Low-level software for

automotive electronic control units

references”, May 2013.

https://blog.nxp.com/automotive/cars-aremade-of-code
https://blog.nxp.com/automotive/cars-aremade-of-code
https://assets.vector.com/cms/content/events/2019/VH/VIC2019/Track_4_1_Why_AUTOSAR.pdf
https://assets.vector.com/cms/content/events/2019/VH/VIC2019/Track_4_1_Why_AUTOSAR.pdf
https://assets.vector.com/cms/content/events/2019/VH/VIC2019/Track_4_1_Why_AUTOSAR.pdf
https://www.autosar.org/

