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ABSTRACT : The purpose of this technical note is to develop an understanding of the influence of 

asymmetrical geometry within preloaded bolted joints. Classical analysis methods are applied to the analysis of 

preloaded bolted joints that use asymmetrical bolt group patterns. Both a detailed analysis of asymmetrical 

joints, using classical beam theory, and a less detailed design analysis are considered. The detailed analysis 

method is extended, using Rotscher’s pressure cone, and is suitable to produce calculated bolt loads that can be 

used in a fatigue analysis. The design analysis provides a quick method of establishing the structural integrity of 

the asymmetrical joint. The detailed analysis method can be applied to the structure being connected by the 

bolted joint and the welds connecting the structure to the joint flanges. The design method is also appropriate 

for application to sprung suspension systems. The methods presented are suitable for use in automated 

procedures of calculation, such as spread sheets, MathCAD ©, SMathSutdio ©, etc. 

KEYWORDS -asymmetric bolted joint, preloaded bolted, bolt preload, bolt tension, multi bolt 

 

I. INTRODUCTION 

Bolted joints are an extremely useful feature in 

mechanical engineering. They allow disassembly for 

maintenance and end of life disposal purposes. 

Bolted joints also allow complex assemblies to be 

made on site without the need for specialist 

processes such as welding, stress relieving, heat 

treatment or other post process activities. Preloading 

the bolts also produces a stiff joint, suitable for load 

bearing structures subjected to load reversals and 

also offer good fatigue resistance.  

There are basically two, related, methods of 

analysing preloaded bolted joints. Firstly, a detailed 

analysis that is based on the theory of beams. 

Secondly, a design analysis method that considers 

each bolt, and a region of flange surrounding it, as 

acting together and performing as a stiff spring. 

Preloading the bolts of the joint is intended to 

produce a uniform, or near uniform, contact pressure 

at the faying surface. This in turn makes the two 

flanges of the joint perform as if they were a single, 

solid, structure. The detailed analysis of a preloaded 

bolted joint assumes that the classical theory of 

bending of beams can be applied to an, effectively, 

single continuous member. The stresses that would 

be produced in this ‘solid member’ by the 

application of external loads act to change the 

contact pressure at the faying surface and to change 

the tensile stresses in the preloaded bolts. Any 

external out of plane bending will also introduce a 

bending stress component in each of the bolts 

The design analysis treats each bolt, and a 

region of the flanges surrounding the bolt, as a 

spring. This type of design analysis is a 

simplification of the detailed, classical, analysis but 

does not require the calculation of section properties. 

However, this simplification of the analysis does not 

reflect the flexural stiffness of the joint and results in 

an over estimate of the axial loads acting at the area 

of the joint flange being controlled by each bolt, and 

hence, an overestimate of the minimum bolt preload 

required to maintain closure of the joint. 

Both the detailed and the design methods of 

analysis consider that shear stresses on the joint are 

supported by friction at the joint face. This requires 

the bolt preload to include an additional component 

of clamping force to support the in-plane loads. This 

additional clamping force has to be equivalent to the 
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maximum shear stress divided by the friction 

coefficient for the faying surface. Some joints use 

dowels, or other positive means of restraint, to assist 

in supporting shear loads. These should be 

considered as providing alignment and preventing 

slip, but not as the primary method of supporting in-

plane, shear, loads. 

 

II. NOMENCLATURE 
 

𝐴𝑏 Tensile area of each bolt 

𝐴𝑗 Total area of joint (Faying surface plus 

bolts) 
 

𝑑𝑏 Nominal bolt diameter 

𝐷𝑓.𝑒 Projected diameter of Rotscher’s pressure 

cone at faying surface 
 

𝐹𝑏(𝑛) Bolt load in bolt ‘n’ 

𝐹𝑏𝑟(𝑛) Bolt-related load for bolt ‘n’ 

𝐹𝑑𝑝 Design preload 

𝐹𝑝 Preload in each bolt 

𝐹𝑧 External axial load in direction of ‘z’ axis 
 

𝐼𝑝.𝑚𝑎𝑥
′  Maximum second moment of area about a 

principal axis 

𝐼𝑝.𝑚𝑖𝑛
′  Minimum second moment of area about a 

principal axis 

𝐼𝑥𝑥.𝑗 Second moment of area of joint about ‘x’ 

axis 

𝐼𝑥𝑥.𝑗
′  Second moment of area transposed about 

x’-axis 

𝐼𝑥𝑦.𝑗 Product moment of area of joint 

𝐼𝑥𝑦.𝑗
′  Transposed product moment of area of joint 

𝐼𝑦𝑦.𝑗 Second moment of area of joint about ‘y’ 

axis 

𝐼𝑦𝑦.𝑗
′  Second moment of area transposed about 

y’-axis 
 

𝑀𝑥 External moment acting about ‘x’ axis 

𝑀𝑥
′  Transposed moment  

𝑀𝑦 External moment acting about ‘y’ axis 

𝑀𝑦
′  Transposed moment 

 

𝑁𝑏 Number of bolts in joint 
 

𝑃𝑝 Pressure at faying surface, preload pressure 

𝑃𝑓 Pressure at faying surface when external 

loads are applied 
 

𝑡𝑓.𝑚𝑖𝑛  Flange thickness, minimum of the two 

flanges 
 

𝑥 Coordinate in plane of joint face 

𝑥′ Transposed coordinate 

𝑥(𝑛) Coordinate of bolt ‘n’ 

𝑥(𝑛)
′  Transposed coordinate of bolt‘n’ 

 

𝑦 Coordinate in plane of joint face 

𝑦′ Transposed coordinate 

𝑦(𝑛) Coordinate of bolt ‘n’ 

𝑦(𝑛)
′  Transposed coordinate of bolt‘n’ 

 

𝜑 Rotscher’s pressure cone angle, half cone 

angle 
 

𝜃 Angle of principal axis 

 

III. DETAIL ANALYSIS OF ASYMMETRICAL 

JOINTS 

It is quite common for asymmetrical joints to be 

defined in terms of a geometrical coordinate system 

that are not the principal axes. This is illustrated in 

Figure 1. 

 
Figure 1. Asymmetrical Joint 

 

The centroid of the joint lies at the point 

where 0 =
1

𝐴𝑗
∫𝑥 ∙ 𝑑𝐴 and 0 =

1

𝐴𝑗
∫𝑦 ∙ 𝑑𝐴 

In Figure (1) the joints geometry and the 

moments 𝑀𝑥 and 𝑀𝑦 are defined with respect to the 

joint’s coordinate system, which may not aligned 

with the principal axes of the joint. When dealing 

with an asymmetric joint it is necessary to determine 

the direction of the principal axes of the joint’s 

cross-section. Then, in order to be able to carry out 

an analysis of the joint, the coordinate system and 

section properties have to be transposed to align with 
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the joints principal axes, as illustrated in Figure (2). 

Also, the moments 𝑀𝑥  and 𝑀𝑦  have to be resolved 

to act about the principal axes.  

 
Figure 2. Transposed Coordinate System and  

Moments 

 

If the principal axes are assumed to be at an 

angle 𝜃 to the axes defining the joint the transposed 

coordinate system is given by the following 

equations: 
 

𝑥′ = 𝑥 ∙ 𝑐𝑜𝑠(𝜃) + 𝑦 ∙ 𝑠𝑖𝑛(𝜃) (1) 
 

𝑦′ = 𝑦 ∙ 𝑐𝑜𝑠(𝜃) − 𝑥 ∙ 𝑠𝑖𝑛(𝜃) (2) 
 

The second moments of area for the joint are 

described by the two equations: 
 

𝐼𝑥𝑥.𝑗
′ = ∫𝑦′

2
∙ 𝑑𝐴   (3) 

 

𝐼𝑦𝑦.𝑗
′ = ∫𝑥′

2
∙ 𝑑𝐴   (4) 

 

Similarly, the product moment of area is 

described by the equation: 
 

𝐼𝑥𝑦.𝑗
′ = ∫𝑥′ ∙ 𝑦′ ∙ 𝑑𝐴  (5) 

 

The principal axes are defined by when the 

product moment area, 𝐼𝑥𝑦.𝑗
′ , is zero. Hence, using 

equations (1) and (2) in equation (5): 
 

𝐼𝑥𝑦.𝑗
′ = ∫(𝑥 ∙ 𝑐𝑜𝑠(𝜃) + 𝑦 ∙ 𝑠𝑖𝑛(𝜃))

∙ (𝑦 ∙ 𝑐𝑜𝑠(𝜃) − 𝑥 ∙ 𝑠𝑖𝑛(𝜃)) ∙ 𝑑𝐴 
 

Working with this term: 
 

𝐼𝑥𝑦.𝑗
′ = ∫𝑥 ∙ 𝑦 ∙ (𝑐𝑜𝑠2(𝜃) − 𝑠𝑖𝑛2(𝜃)) ∙ 𝑑𝐴 

+∫(𝑦2 − 𝑥2) ∙ sin⁡(𝜃) ∙ cos⁡(𝜃) ∙ 𝑑𝐴 

 

 

𝐼𝑥𝑦.𝑗
′ = 𝐼𝑥𝑦.𝑗 ∙ (𝑐𝑜𝑠

2(𝜃) − 𝑠𝑖𝑛2(𝜃)) 

+(𝐼𝑥𝑥.𝑗 − 𝐼𝑦𝑦 . 𝑗) ∙ sin⁡(𝜃) ∙ cos⁡(𝜃) 

 

Resulting in the equation: 
 

𝐼𝑥𝑦.𝑗
′ = 𝐼𝑥𝑦.𝑗 ∙ cos(2 ∙ 𝜃) 

+
1

2
∙ (𝐼𝑥𝑥.𝑗 − 𝐼𝑦𝑦.𝑗) ∙ sin⁡(2 ∙ 𝜃) (6) 

 

Equating the product moment of area, 𝐼𝑥𝑦.𝑗
′ , to 

zero and rearranging the resulting equation shows 

that the angle of principal axis from the joints x-axis 

(positive anticlockwise) is given by the equation: 
 

𝜃 =
1

2
∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (

2∙𝐼𝑥𝑦.𝑗

𝐼𝑦𝑦.𝑗−𝐼𝑥𝑥.𝑗
)  (7) 

 

A term for the second moment of area about 

the 𝑥′-axis can be found by substituting equation (2) 

into equation (3): 
 

𝐼𝑥𝑥.𝑗
′ = ∫(𝑦 ∙ 𝑐𝑜𝑠(𝜃) − 𝑥 ∙ 𝑠𝑖𝑛(𝜃))

2
∙ 𝑑𝐴 

 

Working with this term: 
 

𝐼𝑥𝑥.𝑗
′ = ∫(𝑦2 ∙ 𝑐𝑜𝑠2(𝜃) + 𝑥2 ∙ 𝑠𝑖𝑛2(𝜃) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

− 2 ∙ 𝑥 ∙ 𝑦 ∙ 𝑠𝑖𝑛(𝜃) ∙ 𝑐𝑜𝑠(𝜃)) ∙ 𝑑𝐴 
 

Resulting in the equation: 
 

𝐼𝑥𝑥.𝑗
′ = 𝐼𝑥𝑥.𝑗 ∙ 𝑐𝑜𝑠

2(𝜃) + 𝐼𝑦𝑦.𝑗 ∙ 𝑠𝑖𝑛
2(𝜃) 

−2 ∙ 𝐼𝑥𝑦.𝑗 ∙ 𝑠𝑖𝑛(𝜃) ∙ 𝑐𝑜𝑠(𝜃)(8) 
 

Similarly, a term for the second moment of 

area about the 𝑦′-axis can be found by substituting 

equation (1) into equation (4): 
 

𝐼𝑦𝑦.𝑗
′ = 𝐼𝑦𝑦.𝑗 ∙ 𝑐𝑜𝑠

2(𝜃) + 𝐼𝑥𝑥.𝑗 ∙ 𝑠𝑖𝑛
2(𝜃) 

+2 ∙ 𝐼𝑥𝑦.𝑗 ∙ 𝑠𝑖𝑛(𝜃) ∙ 𝑐𝑜𝑠(𝜃)(9) 
 

It is possible to use equations (6), (8) and (9) to 

show that the maximum and minimum second 

moments of area about the principal axes are given 

by the following equations: 
 

𝐼𝑝.𝑚𝑎𝑥
′ =

1

2
∙ ((𝐼𝑥𝑥.𝑗 + 𝐼𝑦𝑦.𝑗)

+ √(𝐼𝑦𝑦.𝑗 − 𝐼𝑥𝑥.𝑗)
2
+ 4 ∙ 𝐼𝑥𝑦.𝑗

2 ) 

(10) 
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𝐼𝑝.𝑚𝑖𝑛
′ =

1

2
∙ ((𝐼𝑥𝑥.𝑗 + 𝐼𝑦𝑦.𝑗)

− √(𝐼𝑦𝑦.𝑗 − 𝐼𝑥𝑥.𝑗)
2
+ 4 ∙ 𝐼𝑥𝑦.𝑗

2 ) 

(11) 
 

It should be noted that the connection between, 

or the understanding of, which of the second 

moments of area given by equations (10) and (11) is 

parallel to the principal axis defined by the angle 𝜃, 

obtained from equation (7) has been lost. This is 

usually relatively easy to establish by observation, 

although not by computation. There is an advantage 

in using equations (8) and (9) in preference to 

equations (10) and (11) when ‘automatic’ calculation 

methods, such as spreadsheets, MathCAD © and 

SMath Studio © are used since the relationships 

between second moments of area and direction of 

axes are maintained. 

Besides transposing the joint coordinates and 

section properties, the analysis of the joint also 

requires the external out-of-plane moments to be 

transposed. The transposed moments are given by 

the following equations: 
 

𝑀𝑥
′ = 𝑀𝑥 ∙ 𝑐𝑜𝑠(𝜃) + 𝑀𝑦 ∙ 𝑠𝑖𝑛(𝜃) (12) 

 

𝑀𝑦
′ = 𝑀𝑦 ∙ 𝑐𝑜𝑠(𝜃) − 𝑀𝑥 ∙ 𝑠𝑖𝑛(𝜃) (13) 

 

If it is assumed that the bolts are distributed in 

a regular manner across the faying surface and the 

centroid and principal axes of the bolt group 

coincide with those of the faying surface then the 

contact pressure at the faying surface under preload 

and the pressure distribution under the external loads 

can be given by the following two equations: 
 

𝑃𝑝 =
−1

𝐴𝑓
∙ ∑ 𝐹𝑏𝑛    (14) 

 

𝑃𝑓 = 𝑃𝑝 +
𝐹𝑧

𝐴𝑗
+

𝑀𝑥
′

𝐼𝑥𝑥.𝑗
′ ∙ 𝑦′ −

𝑀𝑦
′

𝐼𝑦𝑦.𝑗
′ ∙ 𝑦′ (15) 

 

Similarly, the total load on individual bolts in 

the joint can be given by the equation: 
 

𝐹𝑏(𝑛) = 𝐹𝑝 + (
𝐹𝑧
𝐴𝑗

+
𝑀𝑥

′

𝐼𝑥𝑥.𝑗
′ ∙ 𝑦(𝑛)

′ −
𝑀𝑦

′

𝐼𝑦𝑦.𝑗
′ ∙ 𝑥(𝑛)

′ ) ∙ 𝐴𝑏 

(16) 
 

The negative sign in equation (14) indicates 

that the contact pressure at the faying surface is 

compressive. For the joint to be able to function 

correctly it is required that the contact pressure 

calculated by equation (15) remains compressive 

(i.e. negative) under all cases of external loading. 

This has to be true for all points on the faying 

surface. If in-plane external loads are applied, it is a 

requirement that the resultant shear stress at the joint 

does not overcome the friction between the joint’s 

flanges. The analysis of shear loads on the joint is 

outside the scope of this paper but it has been 

discussed in detail by Welch (2018) in reference [1]. 

It is also a requirement that the total bolt load given 

by equation (16) does not exceed the proof load for 

the bolt. If the bolt load does exceed the proof load 

there could be some relaxation of the bolt preload, 

which in turn could lead to joint failure. 

 

IV. ROTSCHER’S PRESSURE CONE 

The preceding work assumes a uniform, or near 

uniform, pressure distribution at the faying surface. 

In practice, the contact pressure of a preloaded joint 

will not be uniform across the faying surface. It has 

been shown by Rotscher (1927), reference [2], that 

each preloaded bolt influences an approximately 

circular region of the faying surface that surrounds 

it.  As a result, the total effective area and the 

effective second moment of area of the joint are less 

than those of the nominal faying surface area and the 

nominal second moment of area.  Hence, the surface 

contact pressure produced when the bolts are 

installed is higher than that predicted using the full, 

or nominal, faying surface area.  Similarly, the 

change in bolt stress and the change in contact 

pressure due to applied loads are also higher.  These 

two effects tend act to act cancel each other out 

when considering the external loads that could cause 

joint separation. 

When considering a joint similar to that 

illustrated in Figure 3, where the bolts are not 

regularly distributed and the principal axes of the 

faying surface and bolt group are not coincident, the 

effects of Rotscher’s pressure cone need to be taken 

into account. 
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Figure 3. Joint with Non-regularly 

Distributed Bolts. 

 

Figure 4 illustrates how Rotscher’s pressure 

cone is formed and equation (17) provides an 

estimate of the resulting contact area diameter. 

 
Figure 4. Rotscher’s Pressure Cone. 

 

𝐷𝑓.𝑒 = 1.5 ∙ 𝑑𝑏 + 2 ∙ 𝑡𝑓.𝑚𝑖𝑛 ∙ 𝑡𝑎𝑛(𝜑) (17) 
 

Rotscher proposed a half cone angle of 

𝜑 = 45𝑜. However, later researchers have found that 

this is an overestimate and the half cone angle, or 

pressure angle, can depend on a number of factors 

including flange thickness and the stiffening effects 

of surrounding structure attached to the flanges. A 

more realistic, or accurate, suggestion would be to 

use a pressure angle of  𝜑 = 30𝑜 . Rotscher’s 

pressure cone is discussed in more detail in section 

8-5 “Joints – Member Stiffness” of reference [3] 

“Shigley’s Mechanical Engineering Design” (2006). 

The application of a compression cone, based on 

Rotscher’s pressure cone, is also discussed in detail 

in section 3 “Load and deformation conditions”, and 

section 5 “Calculation quantities”, of reference [4] 

“Systematic calculation of highly stressed bolted 

joints Multi bolted joints” (2014). 

 

V. DESIGN ANALYSIS 

The method of detailed analysis that has been 

described is particularly relevant as part of a full 

fatigue assessment or when investigating specific 

aspects of a bolted joint such as an in-service failure. 

In most instances the method of design analysis 

described by Welch (2019) in reference [5] “A 

Paradigm for the Analysis of Preloaded Bolted 

Joints” is adequate to provide evidence of structural 

integrity for a bolted joint. This design analysis is 

based on the assumption that each bolt assembly, 

comprising the nut, bolt washers and a region of the 

flanges defined by Rotscher’s pressure cone, can be 

considered as a spring. Section 3.2 “Principles for 

calculating single-bolted joints; analysis of forces 

and deformation” of reference [4] “Systematic 

calculation of highly stressed bolted joints Multi 

bolted joints” (2014) presents a theoretical study of 

a single bolt assembly which shows the principle 

that forms the basis for this assumption. 

In a design analysis, when only the location of 

the bolt centres is being considered, not the joints 

section properties, the centroid of the bolt group is 

defined as the point where 0 =
1

𝑁𝑏
∙ ∑ 𝑥(𝑛)𝑛  and 0 =

1

𝑁𝑏
∙ ∑ 𝑦(𝑛)𝑛  

It is worth noting that the design analysis does 

not require the diameter of Rotscher’s pressure cone 

or the effective spring stiffness to be calculated. The 

design analysis method is simply based on an 

understanding of how the effective spring stiffness 

influences the joint. 

The direction of the principal axes of the bolt 

group can then be given by the following modified 

version of equation (7): 
 

𝜃 =
1

2
∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (

2∙∑ 𝑥(𝑛)∙𝑦(𝑛)𝑛

∑ 𝑥(𝑛)
2

𝑛 −∑ 𝑦(𝑛)
2

𝑛
) (18) 

 

The design analysis method also requires that 

the bolt centre coordinates are transposed into the 

coordinate system defined by the principal axes of 

the bolt group. This can be achieved by applying 

equation (1) and (2) to the bolt geometry. Re-writing 

these two equations in terms of the bolt location 
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geometry: 
 

𝑥(𝑛)
′ = 𝑥(𝑛) ∙ 𝑐𝑜𝑠(𝜃) + 𝑦(𝑛) ∙ 𝑠𝑖𝑛(𝜃) (19) 
 

𝑦(𝑛)
′ = 𝑦(𝑛) ∙ 𝑐𝑜𝑠(𝜃) − 𝑥(𝑛) ∙ 𝑠𝑖𝑛(𝜃) (20) 
 

The design analysis also requires the external 

out-of-plane moments to be transposed. The 

transposed moments are again given by equations 

(12) and (13), using the angle of direction of the 

principal axes as given by equation (18). 

The bolt related load is then given by the 

following equation: 
 

𝐹𝑏𝑟(𝑛) =
𝐹𝑧

𝑁𝑏
+

𝑀𝑥
′

∑ 𝑦′(𝑛)
2

𝑛
∙ 𝑦(𝑛)

′ −
𝑀𝑦
′

∑ 𝑥′(𝑛)
2

𝑛
∙ 𝑥(𝑛)

′  (21) 

 

The bolt related load given by equation (21) is 

not the load on an individual bolt; it is the 

component of external load that is passing through 

the region of the joint that is controlled by the bolt. 

In effect, the bolt related load represents an 

approximation to the minimum bolt preload required 

to ensure contact pressure is maintained across the 

faying surface. 

This minimum bolt preload requirement 

represents a design preload. Section 3.8 of British 

Standard BS 7608:1990, “Code of practice for 

Fatigue design and assessment of steel structures” 

(1990), reference [6], says that the target or nominal 

bolt preload, 𝐹𝑝 , should be at least 1.5 times the 

design preload, 𝐹𝑑𝑝. Hence, the design requirement 

for the joint is: 
 

𝐹𝑏𝑟(𝑛) ≤ 𝐹𝑑𝑝 (22) 

 

Where the design preload, 𝐹𝑑𝑝, is given by: 
 

𝐹𝑑𝑝 =
2

3
∙ 𝐹𝑝 (23) 

 

The target preload, 𝐹𝑝 , is usually based on a 

percentage of the bolt’s proof load. Typically, 

calculations would assume a bolt preload of between 

60% and 80% of the bolt proof load. When bolts are 

preloaded by tightening with a torque wrench, they 

are tightened to a specify bolt/nut ‘make up’ torque, 

which has been calculated or experimentally shown 

to achieve the required preload. 

 

VI. CONCLUSION 

The method of detailed analysis for an asymmetrical 

bolted joint is based on the theory of beams. Hence, 

the equations that are derived for this method of 

analysis can also be applied to the bending analysis 

of any asymmetrical structures that are being 

connected by the bolted joint. 

Similarly, any welds attaching structures to the 

joint flanges can be analysed using the same 

principles. 

The joint design should, ideally, produce the 

situation where the centroid and principle axes of the 

bolt group, load bearing structures being connected 

and any welds attaching the structures to the joint 

flanges are all aligned. 

The design analysis method is a simplification 

of the detailed analysis and does not require the 

calculation of section properties. This simplification 

of the analysis does not account for the flexural 

stiffness of the joint and results in an over estimate 

of the axial loads acting at the area of the joint 

flange being controlled by each bolt. 

The method of design analysis is based on the 

assumption that each bolt in the joint and a 

surrounding region of the flanges can be considered 

as acting as a spring. Therefore, this method of 

analysis can be applied to calculate load the 

distributions of sprung suspension systems, and 

hence calculate the spring deflections. 

The analysis methods presented are suitable for 

use in ‘automated’ calculation procedures. 
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