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ABSTRACT : The demand to understand complex systems for those involved is high. Systems are 

independentlyattached instead of a combination of them, where some subsystems are discrete event dynamic. 

The merging of Petri nets offers a relatively mature body and extremely promising for dealing with complex 

discrete event dynamic systems. This paper presents a fault diagnosis method based on variable elimination for 

partially observed discrete event systems in a Petri net,  where the faults are in unobservable transitions. The 
variable elimination method is Fourier- Motzkin witch consists of eliminating the desired variable from a set of 

inequalities. The fault diagnosis method used is offline and online. In the offline diagnosis, we will obtain two 

sets of inequalities from the Petri net state equation and apply the Integer Fourier-Motzkin Elimination method 

to eliminate all variables corresponding to unobservable transitions in the inequalities. Then, from online 

diagnosis, the reduced set of inequalities obtains the state diagnosis by observing and verifying the sequence of 

events after each occurrence of an observable event. 

KEYWORDS -Discrete Event System, Fault Diagnosis, Partially Observable, Petri Nets. 

 
 

I. INTRODUCTION  

Discrete event systems (DESs) are those 

where the state sets are discrete and whose evolution 

occurs through events and not through time [3]. 

These systems perceive events in the external world 

from the reception of stimulation events. Examples 

of events are tasks start and the completion and the 

reception of a message in a communication system. 

The occurrence of an event causes, in general, an 

internal change in the system, which may or may not 

be manifest to an outside observer. Nowadays, DESs 

are in manufacturing, robot, transportation system, 

and many others. Automation systems are subject to 

the occurrence of faults that can change their normal 

behavior.  

Faults refer to a total or partial decrease in 

the performance capacity of a component, 

equipment, process, or system to fulfill a function 

during a period. Faults are events that cannot, by 

their very nature, be eliminated in real life [8], and 

the systems that contain faults behave differently 

than expected. However, it does not necessarily 

suspend the system; for example, in manufacturing 

systems, an undiagnosed fault can lead to a 

degradation of the indicators of the overall 

effectiveness of equipment (availability, efficiency, 

and quality) [10]. The need for adequate procedures 

to detect faults is quite evident, considering its 

consequences and impacts in these areas.  

Thus, the study on fault diagnosis in DES is 

suggested and consists of demonstrating the 

occurrence of faults based on observing events 

generated by the system [3]-[12]. Fault diagnosis is 

crucial in most industrial systems when maintaining 

equipment safety.  

This research direction seeks to find 

efficient and reliable ways to detect occurrences' 

faults and their isolation. However, as systems grow 

in complexity and size, automatically obtaining 

accurate and detailed dependency models to capture 

the different characteristics of their behavior 

becomes challenging. The vast amount of work in the 

literature has treated the problem as a significant 

challenge for systems diagnosis.  

Fault diagnosis is detecting an abnormality 

in the system's behavior. It consists of checking the 

system's behavior after an observable occurrence [9]. 

In diagnosing faults in partially observed DES, the 

defects to be analyzed are unobserved events, that is, 
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events whose occurrences cannot be recorded or 

detected by sensors.  

Lin [6] introduced the capacity to diagnose 

the occurrence of a fault in the systems concept, 

which inserted the problem of fault diagnosis into the 

context of DES. Soon after, Sampath et al. [10] 

presented necessary and sufficient conditions for 

fault diagnosis of DESs and proposed the 

construction of a diagnostic automaton that allows 

both inferences about the ability to diagnose the 

faults present in the system when being used to 

perform real-time fault diagnosis. 
Over past decades, two formalisms have 

been used to help with the problem of fault diagnosis 

in partially observable discrete event systems, 

Automata and Petri nets. Automata models guide 

creating a diagnoser automaton to check whether the 

occurrences of unobservable events are possible by 

observing words with finite lengths [5]. Although 

automata models are suitable for DESs, the system 

size would limit their implementation. As these 

models specify all the possible states, it would result 

in large models. Thus, Petri nets are more 

appropriate for addressing faults diagnosis, given 

their excellence in graphical structure.   

We will use the Petri net, in this paper as 

they offer significant advantages due to their graphic, 

mathematical representation ethics and ability to 

analyze, control, validate and implement in different 

systems, especially discrete event systems [7]. The 

problem of diagnosis is considered through the 

modeling of faults as unobservable transitions and an 

online diagnosis that observes sequences of 

observable events and issues a decision on the 

occurrence of fault based on the solution of problems 

[2]-[4]. 
This paper addresses the problem of 

diagnosis inspired by the work of Al-Ajeli and 

Parker [1], they use acrylic Petri nets where 

observable, unobservable, and faulty transitions are 

in the same event and introduces the elimination 

method, Integer Fourier-Motzkin Elimination 

(IFME) originated from Fourier-Motzkin Elimination 

(FME).  

FME is an extension of Gaussian 

elimination methods used in equations, whereas the 

FME is for inequalities. IFME method eliminates all 

the proposed variables separately. It will be helpful 

to drop all the variables from unobservable 

transitions and construct two sets of inequalities [1]-

[2]. After eliminating the variables concerned with 

unobservable transition, check the variable reports to 

observable events for a given sequence of observed 

events and find the state of the diagnosis. 

The paper is organized as follows. Section II 

introduces the concepts of the Petri nets and the 

variable elimination method. Section III displays the 

proposed approach obtaining sets of inequalities 

from the equation state associated with the Petri net 

through offline diagnosis. In Section IV, we get the 

main result through the online diagnosis, compute 

the states, and finally, the conclusion in section V. 

 

II. PRELIMINARIES 

2.1 Petri Nets 

A Petri net (PN) is N = (P, T, Pre, Post) [7] 

where P = {p1, ..., pu} is a set of places, T = {t1, ..., tv} 

is a set of transition, pre, and Post condition : P × T 

→ N. The function M represents a state of a Petri net 

M: P → N, which captures the number of chips in 

each place; (N, M0) denotes a Petri net with the initial 

marking M0. If an M is accessible from M0 through a 

sequence transitions σ = t1 ...tk, then there is a vector 

x such that the following states equation of state is 

satisfied: 

 𝑀 = 𝑀0 + 𝐴𝑥 ≥ 0.(1) 

Where A = [aij] is the m×n matrix called the 

incidence matrix, where aij = post(p,t) – pre(p,t) 

being the weight of the transitions arc to place, x = 

[xi, …, xn]
T T ∈  N is the firing count vector, where xi 

represents the number of occurrences of the 

transition ti ∈  T.  

Given a matrix with ten rows representing 

places and thirteen column representing transitions, 

to get the post condition and precondition , we have 

to consider the weight of the arc connecting the 

places and transitions to be 1. The Post condition is 

obtained  when the places receives the inputs of the 

transitions or when transition input to place (p ←t or 

t→ p) where (p1), (t1, p2), (t2, p3), (t3, p4), (t4, p5), (t5, 

p6), (t6, p5), (t7, p7), (t8, p8), (t9, p5), (t10, p9),(t11, p10), 

(t12, p5).  For the precondition the places input to 

transitions or the transitions receive from places (p→ 

t or p t ←p) where (p1, t1) (p2, t2), (p2, t5), (p2, t7), (p2, 

t10), (p3, t3), (p4, t4), (p4, t13) , (p5, t13), (p6, t6) , (p7, t8), 

(p8, t9), (p8, t13) , (p9, t11), (p10, t12), (p10, t13). 

Example 1.Let us take in consideration the 

Petri nets in the Fig. 1, where P = {p1, ..., p10}, T = 

{t1, ..., t13}, M0 = [1000000000], To= {t1, t3, t4, t5, t9, 

t10, t11,t12, t13, …, tv}, and Tu= {t2, t6, t7, t8, ... tn}. The 

observable transitions To are represented by solid 

rectangles, while the empty rectangles represents 

transitions associated with unobservable transitions 

Tu, There are two faultstransition T1
f = {t6} and T2

f = 
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{t8}, and they can be written as c: =x6≤ 0 and c: =x8≤ 

0; their negation as ¬c: = x6>0 or ¬c: = -x6≤ -1;  ¬c: = 

x8>0 or ¬c: = -x8≤ -1. 

 
 

Figure 1.Example of Petri net. 

 

 

 

The state equation (1 ) for the Petri net is given by: 

𝑀 =

 
 
 
 
 
 
 
 
 
 
1
0
0
0
0
0
0
0
0
0 
 
 
 
 
 
 
 
 
 

+ 

 
 
 
 
 
 
 
 
 
 
−1 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 −1 0 −1 0 0 −1 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 −1
0 0 0 1 0 1 0 0 1 0 0 1 −1
0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 −1
0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 −1 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝑥10

𝑥11

𝑥12

𝑥13 
 
 
 
 
 
 
 
 
 
 
 
 

 ≥  0  

where 

Post =  

 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 

 
 
 
 
 
 
 
 
 

 

 

Pre =  

 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 

 
 
 
 
 
 
 
 
 

 

 

The sequence of events s= {t1} will produce 

two sequences σ1 = t1t2 and σ2 = t1t7t8;one has the 

second type of fault, and another does not; hence we 

are not sure if the the second fault has happened but 

we are sure the first did not in the sequences, as for 

the sequence s = {t1, t5} we are not sure the first fault 

has happen, and sure the second does not.  

Let us assume the sequence is now s= {t1, 

t10, t11, t12}; this sequence produces an observable 

sequence of events. We are sure that the fault has not 

occurred because there is no other sequence of events 

that contains the fault with the same sequence of 

observable events during the observation, the system 

has a normal behavior. Suppose the sequence is s= 

{t1, t9}; it produces a sequence of the observable 

transition and there is a fault T2
f, in this case we are 

sure that the fault has occurred. 

 

 

2.2 The Integer Fourier- Motzkin Elimination 

Method 
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The elimination of a variable in an 

inequality system −Ax ≤ b where A ∈  Rm×n, b ∈  Rm, 

and x = (x1, x2, ..., xn) ∈  Rn [1]-[11]. We can get all 

the elements in the last column of −A as 0, +1, or −1 

by multiplying each inequality by a positive scalar 

and then the set of inequalities can be rewritten as if.  

𝑎′i𝑥
′ ≤ 𝑏i , 𝑖 = 1, . . . , 𝑚1

𝑎′𝑗 𝑥
′ − 𝑥𝑛  ≤  𝑏𝑗 , 𝑗 = 𝑚1 + 1, . . . , 𝑚2

𝑎′𝑘𝑥′ +  𝑥𝑛 ≤ 𝑏k ,   𝑘 = 𝑚2 + 1, . . . , 𝑚.

     (2) 

Where x'= {x1, x2, ... xn−1}. Assume that L = 

max (a'jx' − bj, j = m1 + 1, ..., m2) and U = min (bk 

− akx', k = m2 + 1, ..., m). Since the last two lines (2) 

are equivalent to L ≤ xn ≤ U, then the variable xncan 

be eliminated obtaining:  

 

𝑎′𝑗 𝑥
′ ≤ 𝑏𝑖 ,    𝑖 = 1, . . . , 𝑚1

𝑎′
𝑗 𝑥

′ − 𝑥𝑛  ≤  𝑏𝑘 − 𝑎′
𝑘𝑥′ ,   𝑗 =  𝑚1 , . . . , 𝑚2

𝑘 =  𝑚2 + 1, . . . , 𝑚.

(3) 

By repeating this process, we can 

successively eliminate unwanted variables. 

 

III. THE PROPOSED APPROACH FOR 

FAULT DIAGNOSIS 
The Petri nets are divided into observable 

transitions To and unobservable transitions Tu. All the 

faults are in unobservable transitions; the set of 

transitions that are modelling occurrences of faults is 

Tf. A system can contain different types of faults 

implies Ti
f = {T1

f… Tr
f}.The process of faults 

diagnosis can be divided into two steps: offline step 

and online step.  

The offline diagnoses will be helpful for 

online diagnosis on systems for Partially Observed 

Discrete Events (DES) modeled Petri nets. The 

notion of using the IFME for fault diagnosis in DES 

modeled by Petri nets is introduced. The online 

diagnoser will help us compute the diagnosis state 

through the reduced sets of the inequalities. The 

offline method begins with the eq. (1). Since each 

marking M is non-negative, i.e., M ≥ 0, the equation 

is rewritten as: 

 −𝐴𝑥 ≤ 𝑀𝑜 .                                     (4) 

As faults transitions are associated with c 

and ¬c, these set of inequalities can be defined as: 

 𝑐 ∶=   𝑥𝑖 ≤ 0   𝑎𝑛𝑑  ¬𝑐 ≔  𝑥𝑖 > 0𝑡𝑖∈𝑇𝑓𝑡𝑖∈𝑇𝑓
.(5) 

The I represents the set of inequalities; it 

will add separately the inequalities c and ¬c to have I 

∪{c} and I ∪{¬c} and eliminate all the variables 

corresponding to the set of unobservable transitions 

by applying the IFME. Below we are computing the 

offline algorithm used for the diagnose and 

inequalities obtained from the eq. (1) associated with 

constraints: 
 

Algorithm 1 Offline Diagnoser  

Input: 

• N= (P, T, pre, post, M0): Petri net model. 

• To, Tu, Tf: Sets of observable transition, 

unobservable and faulty transitions respectively. 

Output:  

Set of inequalities with variables that quantify 

the occurrences of observable events being R 

and R'. 

1: Determine the equation of state of the Petri 

net M = M0 + Ax. 

2: Form the set I of inequalities -Ax ≤ M0 and xi 

≤ 0. 

3: Determine Tf = {t ∈  T: ' (t) = f} and then, the 

constraints c and ¬c that models the occurrence 

of faults. 

4: Form the sets I ∪  {c} and I ∪  {¬c}. 

 

Table 1: The sets of inequalities and its constraints 

I ∪ {C} I ∪ {¬c} 

x1≤ 1 x1≤ 1 

-x1+x2+x5+x7+x10≤ 0 -x1+x2+x5+x7+x10≤ 0 

-x2+x3≤ 0 -x2+x3≤ 0 

-x3+x4+x13≤ 0 -x3+x4+x13≤ 0 

-x4-x6-x9-x12+x13 ≤ 0 -x4-x6-x9-x12+x13 ≤ 0 

-x5+x6≤ 0 -x5+x6≤ 0 

-x7+x8≤ 0 -x7+x8≤ 0 

-x8+x9+x13≤ 0 -x8+x9+x13≤ 0 

-x10+x11≤ 0 -x10+x11≤ 0 

-x11+x12+x13≤ 0 -x11+x12+x13≤ 0 
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-xi ≤ 0 i ∈ {2, 6, 7, 8} -xi ≤ 0 i ∈ {2, 6, 7, 8} 

x6≤ 0 -x6≤ -1 

I ∪ {C} I ∪ {¬c} 

x1≤ 1 x1≤ 1 

-x1+x2+x5+x7+x10≤ 0 -x1+x2+x5+x7+x10≤ 0 

-x2+x3≤ 0 -x2+x3≤ 0 

-x3+x4+x13≤ 0 -x3+x4+x13≤ 0 

-x4-x6-x9-x12+x13 ≤ 0 -x4-x6-x9-x12+x13 ≤ 0 

-x5+x6≤ 0 -x5+x6≤ 0 

-x7+x8≤ 0 -x7+x8≤ 0 

-x8+x9+x13≤ 0 -x8+x9+x13≤ 0 

-x10+x11≤ 0 -x10+x11≤ 0 

-x11+x12+x13≤ 0 -x11+x12+x13≤ 0 

-xi ≤ 0 i ∈ {2, 6, 7, 8} -xi ≤ 0 i ∈ {2, 6, 7, 8} 

x8≤ 0 -x8≤ -1 

 

 

IV. MAIN RESULTS 
In this section, we will compute the 

diagnosed state of the given Petri net from the 

reduced set R and R' created by eliminating every 

variable corresponding to unobservable transition in 

the set Tu. The advantage of using R and R' is that 

since all variables relate to observable events, we can 

check that for a given sequence σ if the projection to 

observable events satisfies R and R'. Below is the 

reduced set of inequalities to help computing the 

diagnosis state. 

 

Table 2: Reduced Sets of inequalities 

R1 R'1 

x1≤ 1 x1≤ 1 

-x3+x4+x13 ≤ 0 -x3+x4+x13 ≤ 0 

-x10+x11 ≤ 0 -x10+x11 ≤ 0 

-x11+x12+x13 ≤ 0 -x11+x12+x13 ≤ 0 

-x4-x9-x12 +x13 ≤ 0 -x5 ≤ 0 

-x4-x5-x9-x12 +x13 ≤ 0 -x5 ≤ -1 

-x5≤ 0 -x4-x5-x9-x12 +x13 ≤ 0 

-x1+x3+x5+x10 ≤ 0 -x1+x3+x5+x10 ≤ 0 

-x1+x3+x5+x9 +x10+x13 

≤ 0 

-x1+x3+x5 +x9 

+x10+x13 ≤ 0 

-x1+x3+x5+x10 ≤ 0 -x1+x3+x5+x10 ≤ 0 

-x1+x5 +x10 ≤ 0 -x1+x5 +x10 ≤ 0 

-x1+x5 +x9 +x10+x13 ≤ 0 -x1+x5 +x9 +x10+x13 ≤ 

0 

-x1+x5 +x10 ≤ 0 -x1+x5 +x10 ≤ 0 

R2 R'2 

x1≤ 1 x1≤ 1 

-x3+x4+x13 ≤ 0 -x3+x4+x13 ≤ 0 

-x10+x11 ≤ 0 -x10+x11 ≤ 0 

-x11+x12+x13 ≤ 0 -x11+x12+x13 ≤ 0 

x9+x13 ≤ 0 -x4-x5-x9-x12 +x13 ≤ 0 

-x4-x5-x9-x12 +x13 ≤ 0 -x5 ≤ 0 

-x5 ≤ 0 -x1+x3+x5+x10 ≤ 0 

-x1+x3+x5+x10 ≤ 0 -x1+x3+x5 +x9 

+x10+x13 ≤ 0 

-x1+x3+x5 +x9 +x10+x13 

≤ 0 

-x1+x3+x5+x10 ≤ 0 

-x1+x3+x5+x10 ≤ 0 x1+x3+x5+x10 ≤ -1 

-x1+x5 +x10 ≤ 0 -x1+x5 +x10 ≤ 0 

-x1+x5 +x9 +x10+x13 ≤ 0 -x1+x5 +x9 +x10+x13 ≤ 

0 

-x1+x5 +x10 ≤ 0 -x1+x5 +x10 ≤ 0 

 -x1+x5 +x10 ≤ -1 

 

A diagnoser is a function ∆: T∗
o × 2T

f, which 

indicates if the fault has not occurred, if the fault has 

occurred and if if there is doubt that a fault has 

occurred. The diagnose ∆ (s, Tf) will be a mapping ∆ 

(s, Tf): (N, M0) → {No Fault, Faulty, Uncertain} as 

follows: 

1) ∆ (s, Tf) = No Faulty: If (s) ⊭ R', if the first 

inequality R is satisfied and the second R´ is not 

satisfied it means that the sequence of events 

contains no faults.  

2) ∆ (s, Tf) = Faulty: If (s) ⊭ R,the diagnosis state 

is declared faulty if the R inequality is not 

satisfied and the R' inequality is satisfied. 

3) ∆ (s, Tf) = Uncertain: If (s) ⊨ R and (s) ⊨ R',if 

the both inequalities R and R' are satisfied, the 

diagnosis will be uncertain because there is no 

certainty if the fault has occurred. 
4) ∆ (s, Tf) = Impossible: If (s) ⊭ R and (s) ⊭ R',if 

the two inequalities are not satisfied the state of 

the diagnosis is impossible. 
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Table 3: Diagnose States 

s= pi (σ) (S) ⊨ R1 (s) ⊨ R'1 ∆ (s, Tf) 

ℰ  Yes No No Fault 

t1 Yes No No Fault 

t1, t3 Yes No No Fault 

t1, t5 Yes Yes Uncertain 

t1, t9 Yes No No Fault 

t1, t10, t11, 

t12 

Yes No No Fault 

s= pi (σ) (S) ⊨ R2 (s) ⊨ R'2 ∆ (s, Tf) 

ℰ  Yes No No Fault 

t1 Yes Yes Uncertain 

t1, t3 Yes No No Fault 

t1, t5 Yes No No Fault 

t1, t9 No Yes Faulty 

t1, t10, t11, 

t12 

Yes No No Fault 

 

Let s be the sequence of events and s= pi(σ) 

the corresponding sequence of observable events. 

Suppose that the diagnoser observes no sequence (s 

= ε), which means every variable corresponding to 

the transition in the set of observable transitions is 

replaced by zero on the set,  Ri, i∈ {1, 2}R1, R'1, R2, 

R'2,by observing we find that  both Ri satisfies and 

the Ri' does not satisfy, hence, we are confident that 

no fault has happened, we have (s, Tf) = No Fault, 

when s= t1, we have # (t1,s) = 1 and all other 

variables zero, by replacing the value of variables on 

the set, we find that both set R2 andR'2 satisfy, thus 

the diagnose state is  (s, T2
f) = Uncertain and (s, T1

f) 

= No Fault, the sequence s = t1,t3  all the first set 

Satisfy Ri and second set Ri'does not satisfy, hence 

there is no presence of fault,  the sequence s = t1,t5is 

(s, T1
f) = Uncertainand (s, T2

f)= No Fault.  

Assume now that the sequence is s = t1, t10, 

t11, t12 implies # (t1, s) = 1, # (t10, s) = 1, # (t11, s) = 1, 

# (t12, s) = 1, using these values in the table, we 

observe that the first set satisfies and the second does 

not satisfy, so we are convinced this sequence is free 

of faults; thus, (s, Tf) =No Fault. Suppose, we have 

s=t1, t9 by verifying these values against the  reduced 

sets; we notice that the first R2 does not satisfy and 

the second R'2,satisfy does it; this sequence is Faulty, 

therefore (s, T2
f) = Faulty. Now, if observing or 

considering at the same time all the variable 

corresponding to observable transition set to be 1, the 

diagnose state is impossible as both reduced sets 

does not satisfy. 

 

V. CONCLUSION 
This paper proposed faults diagnosis 

modeled partially observable discrete event systems 

in Petri nets, where the faults were in unobservable 

transition. We considered two techniques of fault 

diagnosis, offline and online. In the offline method, 

the fault diagnosis was based on the elimination 

method called integer Fourier-motzkin method to 

eliminate the variable corresponding to unobservable 

transitions to get two sets of inequalities from the 

state equation of the modeled Petri nets, then get two 

reduced sets by adding the original set of inequalities 

sets to their constraints and the negation, the 

constraints correspond to the fault’s transitions 

straightwardly. In the online method, the state of 

diagnosis was checked from the reduced set of 

inequalities in the variable representing the 

occurrence of observable events and computed the 

system behavior status: no fault, faulty, and uncertain. 

The future investigation will focus on the faults that 

are not modeled as events. 
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