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Abstract: Robot mapping and exploration is essential to many robotic applications such as search and rescue 

operations in disaster scenarios, warehouse management, service robotics, patrolling and autonomous driving. 

With recent advances in robot navigation and sensor compactness, single robot systems can accurately model 

the environment and perform complex independent navigation tasks. On the other hand, multi-robot systems can 

speed up mapping and exploration tasks in emergencies, such as rescue missions, by using distributed sensors, 

thereby increasing the range of exploration tasks to the extent which is not possible with a single robot. This 

paper studies mapping and path planning for multiple mobile robots in an indoor environment. Combined with 

map merging and path planning algorithm, this paper briefly compares four SLAM algorithms (G-mapping, 

Hector-SLAM, Karto-SLAM and Cartographer) in indoor environment using pose error and map alignment 

metrics. Furthermore, real-time path planning is studied to test the mapping results. A* algorithm is used for 

global path planning to optimize the track, and the DWA algorithm is adopted for local path planning to avoid 

obstacles. Experimental results validate the SLAM, map merging, and path planning algorithms in a simulated 

environment. This paper's results may help researchers quickly select appropriate algorithms to build 

Multi-Robot SLAM systems according to their demands. 
 

Keywords:  robot mapping, SLAM, Path Planning, multi-robot system. 

 

I.  INTRODUCTION  

Simultaneous Localization and Mapping is an 

essential skill for a robot to navigate in unknown 

environments. The SLAM problem is the backbone 

for the modern autonomous driving industry and is 

used for many applications including warehouse 

robotics, search and rescue and infrastructure 

maintenance. Single robot SLAM has been 

extensively studied over the last 20 years and many 

solutions to the problem have been proposed. Many 

of these techniques formulate the SLAM problem 

with probabilistic filters such as the Kalman filter or 

information filters where the robot poses and features 

are stored in a large state vector which is 

continuously updated as the robot explores the area 

and new landmarks are added to the vector [1]-[2]. 

The landmarks can be represented as simple points 

such as corners, or as defined features such as lines, 

planes and in the case of cameras as keypoint 

features that are extracted from the camera images. 

The complexity of the SLAM problem increases with 

the type of environment (static and dynamic), and 

kind of features that are used to determine the 

environment [3]-[5]. For mapping in indoor 

environments, a common method is to represent the 

environment as metric maps, particularly occupied 

grid maps, where the obstacles and navigable spaces 

are represented in the grid as occupied or unoccupied 

cells. SLAM with occupancy grid maps has been 

presented as Fast SLAM, which uses a 

Rao-Blackwellized particle filter [6]. Other methods 

include representing the environment as features, 

e.g., lines, planes or point features [7]-[9]. Recently 

graph based approaches to solving the problem are 

gaining popularity amongst SLAM researchers [10]. 

In graph SLAM, the robot’s poses are presented as 

nodes and edges and the problem is divided into front 

and back end. While the local SLAM and map 

corrections are done at the front end, the global 

optimization is performed as a graph optimization 

problem at the back end. A brief overview of recent 

advances in SLAM is presented in [11]. 

  In case of multi-robot systems, the SLAM problem 

can be regarded as a distributed problem, where each 

robot performs its own SLAM and their individual 
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maps are finally merged using some method to 

combine all the features [12]-[14]. The problem is 

challenging because constraints and errors arising 

from individual robots will result in a corrupted map 

and failed localization [15]. Secondly, the 

computational power required to handle such a 

complex process of combining maps and correcting 

pose errors from individual robots into a global map 

is very high [16]. Communication between the robots 

is also challenging and algorithms need to be 

designed such that messages can be transferred 

seamlessly between the robots [17]-[18]. 

[19] Proposed path prediction planning based on 

the artificial potential field to improve obstacle 

avoidance. [20] Combined the Q-learning algorithm 

with the deep learning algorithm for path planning, 

which enabled robots to make reasonable walking 

paths under complex environmental conditions. [21] 

Applied an improved path planning algorithm to 

unmanned underwater survey ships, enabling quick 

obstacle avoidance and return to the preset route. 

However, these studies did not take into account the 

impact of the rescue environment on the SLAM 

algorithm. If these algorithms are directly applied to 

rescue robots, it may deteriorate the accuracy of path 

planning and even cause incorrect path planning 

results. At present, there are still rare systems that 

can combine multi robot SLAM and path planning 

for indoor rescue. Therefore, it is necessary to study 

the impact of the rescue environment on the multi 

robot SLAM system and path planning algorithm and 

evaluate and select the SLAM algorithm suitable for 

the rescue environment. 

In this paper, we evaluated the results of some 

commonly used SLAM algorithms in simulated 

environment, tested the map merging and path 

planning algorithms in an indoor search and rescue 

environment. These experiments revealed the 

demerits of some algorithms and provided a 

benchmark for subsequent algorithm improvement. 

The rest of the paper is organized as follows. 

Section 2 provides a brief description of four 
commonly used SLAM algorithms; Section 3 briefly 

describes the map merging algorithm for multiple 

mobile robots; Section 4 describes the  A* and 

DWA algorithm for path planning; Section 5 

provides and analyzes the simulation results of 

SLAM comparison, multi-robot mapping and path 

planning; Section 6 gives the conclusion.  

II.   POTENTIAL SLAM TECHNIQUES 

In this section, a brief description of four SLAM 

techniques is conducted, namely: Gmapping, 

Hector-SLAM, Karto-SLAM, and Cartographer. 

A. Gmapping 

Gmapping is a laser-based SLAM algorithm as 
described by [22]. Furthermore, it is the most widely 

used SLAM package in robots worldwide. This 

algorithm has been proposed by Grisetti et al. and is 

a Rao-Blackwellized PF SLAM approach. The PF 

family of algorithms usually requires a high number 

of particles to obtain good results, which increases its 

computational complexity. Also, the depletion 

problem associated with the PF resampling process 

decreases the algorithm accuracy. This happens 

because the importance weights of particles may 

become insignificant. Hence, this means that there is 

a small probability that correct hypothesis can be 
eliminated.  

An adaptive resampling technique has been 

developed in [22], which minimizes the particle 

depletion problem, since this process is only 

performed when is needed. The authors also 

proposed a way to compute an accurate distribution 

by taking into account not only the movement of the 

robotic platform, but also the most recent 

observations. This decreases the uncertainty about 

the robot’s pose in the prediction step of the PF. As a 

consequence, the number of particles required is 

decreased since the uncertainty is lower, due to the 

scan matching process. In our experiments, the 

number of particles used by Gmapping was 30. 

 

B. Hector-SLAM 

Hector-SLAM combines a 2D SLAM system 

based on robust scan matching and 3D navigation 

technique using an inertial sensing system [23]. The 

authors have focused on the estimation of the robot 

movement in real-time, making use of the high 

update rate and the low distance measurement noise 

from modern LIDARs. The odometric information is 

not used, which gives the possibility to implement 

this approach in aerial robots like, a Quadrotor UAV 

or in ground robots operating in uneven terrains. On 

the other hand, it might have problems when only 

low rate scans are available and it does not leverage 

when odometry estimates are fairly accurate. 

The 2D pose estimation is based on optimization 

of the alignment of beam endpoints with the map 

obtained so far. The endpoints are projected in the 

actual map and the occupancy probabilities are 

estimated. Scan matching is solved using a 

Gaussian-Newton equation, which finds the rigid 

transformation that best fits the laser beams with the 

map. In addition, a multi-resolution map 
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representation is used, to avoid getting stuck in local 

minima. Finally, the 3D state estimation for the 

navigation filter is based on EKF. However, this is 

only needed when an Inertial Measurement Unit 

(IMU) is present, such as in the case of aerial robots. 

Thus, it will not be used in this work. 

C. Karto-SLAM 

Karto-SLAM is a graph-based SLAM approach 

developed by SRI International’s Karto Robotics, 

which has been extended for ROS by using a 

highly-optimized and non-iterative Cholesky matrix 

decomposition for sparse linear systems as its solver 

[24]. A graph-based SLAM algorithm represents the 

map by means of graphs. In this case, each node 

represents a pose of the robot along its trajectory and 

a set of sensor measurements. These are connected 

by arcs which represent the motion between 

successive poses. For each new node, the map is 

computed by finding the spatial configuration of the 

nodes which are consistent with constraints from the 

arcs. In the Karto-SLAM version available for ROS, 

the Sparse Pose Adjustment (SPA) is responsible for 

both scan matching and loop-closure procedures 

[25]. The higher the number of landmarks, the more 

amount of memory is required. However, 

graph-based SLAM algorithms are usually more 

efficient than other approaches when maintaining a 

map of a large-scale environments. In the particular 

case of Karto-SLAM, it is extremely efficient, since 

it only maintains a pose graph. 

D. Cartographer 

Cartographer is an active approach that provides 

real-time SLAM in 2D and 3D across multiple 

platforms and sensor configurations. It is an 

open-source library, developed by Google since 

2016, which is also a state of art algorithm. Worth to 

mention, Google Cartographer does not require a 

particle filter algorithm for mapping. It overcomes 

the issue of error accumulation during long iterations 

by pose estimation against a recent sub-map. 

In 2D SLAM, the Cartographer supports running 

the correlative scan matcher, which is used for 

finding loop closure constraints with a sub-map (at 

the best-estimated position) referred to as frames. In 

detail, scan matching occurs at a recent sub-map, 

therefore it only depends on the recent scans. After 

each sub-map is finished, there are no longer new 

scans that could be inserted; it automatically checks 

all sub-maps and scans for the loop closure. A scan 

matcher starts to find the scan in the sub-map if the 

scans and the sub-maps are close enough based on 

the current pose estimates [26]. 

The conversion process from a scan into a sub-map 

is given in [27]. The generated sub-maps are 

presented in the form of a probability grid point 

which contains all the endpoints of beams that are 

closest to that grid point. Whenever a scan is inserted 

into the probability grid; the hits and misses are 

computed. Cartographer uses the Ceres scan 

matching approach to increase the accuracy of the 

scan pose in the sub-map. 

III.   MAP MERGING ALGORITHM 

  Multirobot_map_merge algorithm provides global 

map for multiple robots. It can merge maps from 

arbitrary number of robots while expects maps from 

individual robots as describe by [28]. In his work the 

author has present a novel algorithm for merging 

two-dimensional maps created by different robots 

independently without initial knowledge of relative 

poses of robots. The algorithm is inspired by 

computer vision image stitching techniques for 

creating photo panoramas. Presented algorithm relies 

only on map data represented as occupancy grids, 

which allows great scalability for heterogeneous 

multi-robot swarms and makes algorithm easily 

deployable with various SLAM algorithms. The 

map-merging algorithm was implemented as 

publically available ROS package and was accepted 

in ROS distribution. 

As discussed above map merging algorithm is 

inspired by image stitching algorithms. Stitching 

algorithms are well-understood and implementations 

are broadly available. General concept of multi-step 

stitching pipeline is described in [29]. Stitching 

pipeline is also well established code in Open Source 

Computer Vision Library (OpenCV), mostly based 

on [29], along with [30] and others. 

Algorithm used in this work is presented in [28], in 

proposed algorithm author mainly solve the 

registration part (estimating transformation between 

grids). Compositing part of stitching is relatively 

simple for occupancy grids compared to images from 

camera, because we don’t need to compensate 

exposure errors, gain and other deficiencies. 

Registration solves the main problem of acquiring 

transformation between individual frames of robots 

and bridges the problem of merging maps with 

known initial positions and unknown initial 

positions. Algorithm 1 and 2 offers overview of the 

proposed algorithm.  
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Algorithm1. Proposed algorithm for estimating 

transformation between multiple occupancy grids. 

Uses Algorithm 3 to estimate final transformations. 

 

 

 

Algorithm 2. Algorithm estimating transformations 

to global reference frame from pairwise 

transformations on spanning tree. 

Input: t maximum spanning tree on grids, P(𝑖, 𝑗) pairwise reduced affine          

……    transformation in homogeneous coordinates between grids 𝑖, 𝑗. 

Output: 𝑇𝑖∀𝑖∈ 𝑉 transformations to global reference frame 

1: procedure ESTIMATEFINALTRANSFORMATION 𝑡 =  𝑉, 𝐸 , 𝑃𝑒∀𝑒∈

𝑒 

2:  𝑒 ← edges of t sorted by discover time in breadth-first search starting 

…..from grid with global reference frame  

3:   ∀𝑇𝑖 ∶  𝑇𝑖 ← 𝐼                » initialize transformation with identity 

4:   for all (𝑖, 𝑗) in 𝑒 do 𝑇𝑗 ← 𝑇𝑖𝑃(𝑖, 𝑗)          

5:   end for 

6: end procedure 

 

IV.   PATH PLANNING ALGORITHMS 

  Path planning solves three fundamental problems: 

1. The robot reaches the goal position. 

2. Real-time obstacle avoidance during the 

moving process 

3. To find the optimal path to the desired goal. 

 

A. Global Path Planning 

  Based on the global path planning of the grid 

method, the A* algorithm is used to study the path 

planning. The A* algorithm follows the cost function 

to make the robot to directionally search for the path 

toward the end point. The core valuation function of 

the A* algorithm is 

                

𝑓 𝑛 = 𝑔 𝑛 + 𝑕 𝑛 ,                 (1) 

 

Where n the node is abstractly understood as the next 

target point, 𝑓 𝑛   represents the total valuation 

function of the current node 𝑛, 𝑔 𝑛   represents the 

actual cost of the starting point to the current point, 

and 𝑕 𝑛  represents the estimated cost of the current 

node to the end point. The value of 

𝑕 𝑛    determines the performance of the algorithm. 

In A* 𝑕 𝑛  used the Manhattan distance between the 

two points in space. The Manhattan distance between 

two points (𝑥1 , 𝑦1) and (𝑥2 , 𝑦2) is as follows: 

 

𝐷𝑀𝑎𝑛 𝑕𝑎𝑡𝑡𝑎𝑛 =  𝑥1 − 𝑥2 +  𝑦1 − 𝑦2          (2) 

 

B. Local Path Planning 

The DWA algorithm is selected as the main 

algorithm for local path planning. The DWA 

algorithm requires the robot to perform numerical 

simulation calculations on the path of the robot 

within a certain speed window. Thus, it is necessary 

to obtain the model state expression of the robot. The 

two-wheeled robot based on differential drive has no 

velocity in the -axis direction. Since the robot is at 

the millisecond level in each sampling period of the 

program execution, the motion trajectory of the robot 

in the two adjacent sampling periods can be 

approximated as a straight line. In a period of 

time ∆, the robot travels a small distance at speed 

𝑣, and it is at an angle 𝜃𝑡 to the 𝑥-axis; then, the 

movement increments ∆𝑥   and ∆𝑦  of the robot on 

the 𝑥 -axis and the 𝑦 -axis can be obtained, 

respectively: 

 

Input: k occupancy grids 

Output: for each grid: transformation between grid and global reference 

frame, or value indicating transformation could not be estimated for current 

grid. 

 1: Procedure ESTIMATEGRIDTRANSFORM (grids) 

 2:  detect ORB features (key points) for each grid 

 3:  for all (i, j) pair of grids do      »compute transform for each pair 

 4:    match features 

 5:    n  number of matches 

 6:    if n ≤ matches threshold then 

 7:     confidence  0 

 8:    else  

 9:     try find restricted affine transformation for features with RANSAC 

10:     ᴪ  number if inliers in RANSAC 

11:     if Transformation found then 

12:       confidence  ᴪ/(8+0.3n) 

13:       P(i, j)  restricted affine transformation 

14:     else 

15:       confidence  0 

16:     end if 

17:    end if 

18:  end for 

19:  matches  (i, j) for matches with confidence ≥ 1.0 

20:  g  (grids, matches) 

21:  h  largest connected component in g 

22:  t  maximum spanning tree in h 

23:  ESTIMATEFINALTRANSFORM (t, P(i, j) Ɐℯ ϵ edges if t)  »walk t 

…….and compute transformation to global reference frame See Algorithm 2 

24: end procedure 
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     ∆𝑥 = 𝑥 + 𝑣∆𝑡 𝑐𝑜𝑠 𝜃𝑡 ,          (3) 

    

 ∆𝑦 = 𝑦 + 𝑣∆𝑡 𝑠𝑖𝑛 𝜃𝑡 ,           (4) 

The robot’s movement trajectory is then given by 

 

    𝑥𝑡+1 = 𝑥𝑡 + 𝑣∆𝑡 𝑐𝑜𝑠 𝜃𝑡 ,          (5) 

    𝑦𝑡+1 = 𝑦𝑡 + 𝑣∆𝑡 𝑠𝑖𝑛 𝜃𝑡 ,          (6) 

       𝜃𝑡+1 = 𝜃𝑡 + 𝜔∆𝑡,             (7) 

Where ω is the angular velocity of the robot. 

When the robot is safely avoiding obstacles in 

navigation, the speed (𝑣, 𝜔 )  during the whole 

locally planned trajectory must be within the range of 

speeds given by 

 

𝑉𝑑 =   𝑣, 𝜔     2𝑑𝑖𝑠(𝑣, 𝜔)𝑣 𝑑 ≥ 𝑣𝑐 , 2𝑑𝑖𝑠 𝑣, 𝜔 𝜔𝑑 ≥ 𝜔𝑐},                

(8) 

 

Where 𝑑𝑖𝑠(𝑣, 𝜔) is the minimum distance from the 

current position to the point where the arc trajectory 

of  𝑣 and ω intersects the nearest obstacle. 𝑣𝑐  And 

𝜔𝑐  are the current speed and angular velocity of 

robot while 𝑣 𝑑  is the maximum deceleration. 

V. RESULTS AND DISCUSSION 

In order to test the aforementioned algorithms, we 

carry out simulation experiments in ROS melodic 

running on Ubuntu 18.04 operating system using the 

Gazebo simulator to build the simulation 

environment. The virtual environment has real 

physical properties, and the simulation results have 

strong reference to the actual environment. All 

experiments were performed using KOBUKI robot 

equipped with 2D LIDAR sensor and wheel encoder. 

A. SLAM Comparison 

It is very important to build accurate maps for SLAM 

testing, as the resulting map has to be compared 

against the ground truth and any inaccuracies might 

lead to different results. For that, a map generation 

script was written to generate accurate Gazebo SDF 

descriptions of the desired map. After running the 

script to generate the map, the resulting map can be 

seen on Fig. 1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Map in image editor     (b) Generated map in gazebo 

 

 Fig. 1. Scripted map generation for gazebo. 

 In SLAM simulation the robot was tele-operated 

and the ground truth and SLAM data were collected 

in a rosbag file so that all SLAM algorithms get the 

same working data. The mapping results for the test 

map can be seen on fig. 2. At visual inspection, we 

can see that, Hector Slam and Cartographer perform 

better, as the noise in the walls is lower. They look 

straight and sharp, as opposed to Gmapping and 

Karto, where the walls look noisy. 

 

 

 

 

 

 

(a) Gmapping (b) Hector-SLAM (c) Karto-SLAM (d) Cartographer 

 

Fig. 2. Occupancy grid maps obtained through 

SLAM simulation. 

  To evaluate the performance of SLAM 

algorithms, an analysis of pose error and map 

alignment  metric was conducted. 

1. Pose Metrics 

  The most natural way of analyzing the poses is 

the squared error from the pose estimates against the 

ground truth. By calculating the distance from one to 

another and adding over time, we can get a good 

metric for the pose error. Fig. 3  

 

 

 

 

 

 

Fig. 3. Representation of metrics taken. 
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[31] Proposes to select the pairs  (𝑖, 𝑗) from the 

dataset using scan matching evaluated by a human 

operator. Since our dataset have the ground-truth, all 

possible displacements can be evaluated. Given a set 

of N poses, the linear displacement can then be 

represented by: 

 

𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =  
1

𝑁2
  𝑡𝑟𝑎𝑛𝑠(𝛿𝑖,𝑗  Ө 𝛿𝑖,𝑗

∗ )2𝑁
𝑗=1

𝑁
𝑖=1  (9) 

 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =  
1

𝑁2
  𝑟𝑜𝑡(𝛿𝑖,𝑗  Ө 𝛿𝑖,𝑗

∗ )2𝑁
𝑗=1

𝑁
𝑖=1  (10) 

 

The displacements 𝛿𝑖,𝑗  and 𝛿𝑖,𝑗
∗  are calculated by 

taking the relative transformation between two poses 

i and j. The squared error is easier to calculate, as it 

relates only to the current pose. The individual pose 

errors are then summed across the trajectory and 

normalized according to the following equations: 

𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑞𝑎𝑢𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =   
1

𝑁
𝑡𝑟𝑎𝑛𝑠(𝑑𝑖)

2𝑁
𝑖=1          

                                                                                      (11) 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑞𝑎𝑢𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =   
1

𝑁
𝑟𝑜𝑡(𝑑𝑖)

2𝑁
𝑖=1                 

                                                                                   (12)  

The results of running the pose error metric on 

SLAM generated and ground-truth trajectories are 

given in Table 1. 

 
Table 1 

Results of map comparison using pose error metric. 

 

 Gmapping Hector Karto 
Cartog

rapher 

Linear 

Displacement 
0.000370 0.000244 0.00314 

0.01376

8 

Angular 

Displacement 
0.000036 0.000026 0.00001 

0.00004

4 

Linear 

Squared 

error 

0.000386 0.001013 0.00358 
0.01352

9 

Angular 

Squared 

Error 

0.000386 0.000025 0.00016 
0.00060

3 

 

In pose error metric we can see that Hector shows 

the best pose estimate in displacement, but 

Gmapping overcomes in squared error. Karto shows 

the good results in angular displacement but 

Cartographer lags behind. We can actually see why 

looking at the map in Fig. 2, as Cartographer’s map 

is tilted relative to the others. This error of 

orientation at the start was probably what made 

Cartographer perform worse in the localization. 

2. Map Alignment Metric 

   The second method chosen for the SLAM 

comparison is through map alignment. Once we have 

both the ground-truth and the generated maps we can 

then run an algorithm to align the maps properly, as 

suggested by [32]. First both maps are imported as a 

point cloud, each pixel representing a point in space 

as shown in Fig. 4, then ICP technique is used to 

align the maps. ICP or Iterative Closest Point, is a 

way of aligning 3D meshes. The ICP algorithm used 

is the one provided by [33]. It will calculate the 

transformation that best align the maps shown in Fig. 

4a & 4b. The aligned point cloud can be seen in Fig. 

4c. With the maps aligned, we then use the following 

equation, 

 

𝜖(𝑚𝑎𝑝) =  
1

𝑃
 𝑑𝑖𝑠𝑡(𝑝𝑖 − 𝑝𝑖

∗(𝑝𝑖))2𝑃
𝑖=1         (13) 

To calculate the error metric, where P is the 

number of points in Fig. 4b, 𝑝𝑖  represents one point 

in the data set and  𝑝𝑖
∗ is the nearest neighbor of 𝑝𝑖  

in the dataset shown on Fig. 4a. All measurements 

are in pixel. 

 

 

 

 

 

 

 

 (a) Ground Truth   (b) SLAM Generated (c) Aligned Maps 

 

 Fig. 4. Results of running ICP algorithm 

The results of running the ICP matcher with the 

algorithms can be seen on Table 2. The best 

algorithm in all cases was Cartographer, scoring 

lowest. This means two things: most of the walls 

were placed in the correct spot and the noise is low. 

Gmapping is in second place, justifying the wide 

adoption of Gmapping in the robotic world. Karto 

was on third position in this test, while Hector ends 

up in last position. 

 
Table 2 

Pixel Squared Error 

 

Gmapping Hector Karto Cartographer 

0.55835 0.76590 0.62870 0.51960 
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3. Considering Rescue Environment: 

In rescue environment, there are stairs and rugged 

surface which make the odometer inaccurate. It 

means we could not choose Gmapping because it is 

very rely on odometer. Due to the rugged surface, 

IMU is also inaccurate which means Karto and 

Cartographer may get bad results. So, we choose 

Hector-SLAM for search and rescue task using 

multiple mobile robot. Also Hector performed very 

well in pose error metric and it was also close to 

other SLAM techniques in map alignment metric. 

 

B. Multiple Robot SLAM: 

To evaluate the map-merging algorithm introduced 

in section 3, a large house map was used in gazebo 

ROS. All simulated robots were KOBUKI, which 

formed a homogeneous exploring team. Robots were 

set up using KOBUKI packages available in ROS, 

which also configures SLAM and navigation for 

robots. Robots where using the Hector-SLAM 

package providing the SLAM algorithm and move 

base package part of the ROS navigation stack, 

providing navigation for robots. Every robot was 

using its own ROS namespace for topics and was 

using a prefix for published TF frames to allow 

running multiple robots under the same ROS master. 

Presented merging algorithm can work with both 

known and unknown initial positions of robots. In 

our case the algorithm uses initial positions to obtain 

transformation between grids. Maps in this mode are 

not required to have any overlapping area. 

Simulation featured 3 robots exploring common area. 

Fig. 5a shows the scene used in the experiment and 

initial robots positions. Fig. 5b shows maps produced 

by Hector-SLAM and the merged map produced by a 

map-merging algorithm with known initial positions 

after mapping finished. 

Map-merging algorithm presented in Section 3 can 

efficiently work with arbitrary number of robots. It 

scales well to large multi-robot systems and is 

designed with parallel processing in mind. The 

algorithm is suitable for heterogeneous multi-robot 

swarms and is easily deployable with various SLAM 

algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

 

Fig. 5. Maps produced by a multi-robot mapping in 

the simulator with 3 robots. The merged map (bottom 

right) is estimated by the map-merging node without 

knowledge of initial positions. 

C. Path Planning Experiment: 

After obtaining the environment map from map 

merging, the map was loaded under the ROS 

framework for path planning purposes. We use the 

RVIZ package under the ROS framework for path 

planning and navigation simulation. The constructed 

map is shown in Fig. 6. The cyan portion indicates 

the safe distance between the robot and the obstacle. 

The red arrow points to the target point and direction 

of the robot. The path planning and navigation 

results, are indicated by the green line. We see that 

the simulated path not only successfully avoids static 

obstacle (walls) as well as the dynamic obstacles 

(other robots) but also is a shortest path. 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6. Simulation results of path planning 

V.     CONCLUSION 

In this paper, the problem of indoor search and 

rescue using multiple mobile robots was studied. 

Comparisons were done on the Gmapping, 
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Hector-SLAM, and Cartographer algorithms for 

SLAM based on pose error and map alignment 

metric. The path planning was done by combining 

the A* algorithm for global path planning and the 

DWA algorithm for local path planning. Simulated 

experiments were conducted to compare and validate 

the results on map construction map merging and 

path planning. In the future, further optimization 

needs to be carried out in the mapping algorithms to 

make them more suitable to the real rescue 

environment. 
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