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Abstract— The paper address the topic of an efficient evaluations of the performances of transportation 

systems in terms of both Quality and Reliability, by means of an “ad hoc” developed mathematical index which 

puts the two aspects in close connection. This relationship is in accordance with the currentstate of art of the 

studies on the transportation Systems, and takes advantage of recent developments in the stochastic process 

theory, as well as risk and safety analysis. The two aspects of Quality and Reliability are indeed closely related, 

especially if  dynamic aspects in system’s behavior are taken into account. According to this philosophy, the 

authors discuss the main features of the proposed index, and illustrate the adoption of a suitable Bayesian 

method for its estimation, which is based upon prior (or “a priori”) information, which should be easily 

available. For this purpose, the Beta and the Gamma distribution are chosen as prior models on the parameters, 

implying a Negative Log-Gamma for the index. Finally, the summary of a large set of numerical simulations is 

presented, which show the high efficiency of such Bayesian estimation methodology. In particular, its 

superiority with respect to the “classical” Maximum Likelihood (ML) estimation methods, traditionally adopted 

for such systems, is illustrated. 

Keywords— Bayes methods;Negative Log-Gamma distribution; Quality; Reliability;  Transportation Systems

 

NOMENCLATURE 

CDF cumulative distribution function 

DA                       Delay amplitude 

PDF probability density function 

SD, σ standard deviation 

REFF Relative Efficiency of a Bayes 

estimator 

RV                       random variable 

NLG Negative Log-Gamma distribution 

D observed data 

E[X] mean value of the RV X 

EP exceedance probability  

g(), g(|D) prior and posterior PDF of  

parameter 

° Bayes estimate of a generic 

parameter 

ML Maximum Likelihood 

SEB ean Square Error of a Bayes 

estimator  

SEL Mean Square Error of a ML 

estimator  

QI   Quality Index 

TSTransportation systems 

 fault frequency 

Zj delay amplitude at j-th fault 

occurrence 

Y(t) maximum delay amplitude in (0,t) 

Q Exceedance Probability = P(Wj>z) 

( . ) Euler-Gamma function 

z extremal value of the DA  
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I. INTRODUCTION 

In recent times,the use of concepts of Reliability 

and Statistics in Transportation systems(TS)has 

become widespread,  as also proven by a recent book 

issued in 2018 [1]. Key issues which were originated 

in that framework, such "dependability", “resilience”, 

“vulnerability”  and similar ones, have become part 

of the vast range of concepts used to describe, along 

the more traditional concept of Quality,  the 

performances of Transportation systems [1-4].  

The present paperis based upon some theoretical 

results derived from stochastic process theory and 

risk and safety analysis [5-13],and the Bayes 

methodology, which has become increasingly 

adopted in all fields of engineering, especially in 

Reliability [14-16]. In particular, the paper is focused 

on the statistical estimation of a suitable “Reliability 

based” Quality Index (QI) defined with respect in 

terms of delays suffered from the TS customers 

because of system faults. The approach is based on 

the Poisson Process model for delay occurrences, and 

proposes an estimation method which is, in some 

cases, independent of the particular PDF of delay 

amplitudes. This feature is particularly attractive in 

view of statistical estimation, here performed using a 

new Bayesian estimation method. In particular, the 

statistical characterization is based upon a 

probabilistic model which has been introducedin [12] 

and whose estimation approach  is similar to the one 

proposed in [13],in a different framework, i.e. a study 

devoted to define and evaluate a safety of engineering 

systems subjected to random loads. Then, if the 

concept of safety is substituted by the one of quality, 

and the  random loads are meant as the random 

delays, the quality can be approached in a way which 

is analogous to the one used for safety, thus taking 

advantage of the recent development in such field. 

The proposed quality index (QI) is defined as the 

probability that a given delay amplitude (DA) is 

never exceeded in a given time interval. The 

proposed QI is intrinsically dynamic, being 

dependent on the chosen value of time horizon. Once 

the stochastic model has been established, the 

fundamental problem arises of making inferences 

about its parameters, on the basis of observed data.  

As well-known [11,15-16], Bayesian inference is 

rapidly becoming the most widely adopted 

methodology for estimation purposes, and it is often 

preferred to classical inference, due to its coherence 

and flexibility in allowing the use of experimental 

information and expert judgements on the parameters 

to be estimated. These data are converted into so-

called “prior information”, which is conveniently 

updated in the light of observed data, thus permitting 

to obtain more efficient estimates with respect to 

classical inference.In the paper an analytical 

technique for Bayes estimation based upon suitable 

prior information is described, characterized by inner 

robustness and flexible computational 

implementation, yielding an efficient Bayes 

estimation of the QI. The remainder of this paper is 

organized as follows. Section 3 provides an overview 

of the stochastic modeling of the TS leading to the 

a.m. QI. A simple case study is also reported at the 

end of Section 3.Section 4 applies the above said 

analytical technique for Bayes estimation of the 

QI.Finally, Section 5illustrates a large set of 

numerical simulations in order to assess the 

efficiency of such Bayesian estimation methodology. 

II. STOCHASTIC MODELING FOR 

RELIABILITY AND QUALITY OF 

TRANSPORTATION SYSTEMS 

The liberalized approach that the transportation 

systems management has undergone recently has 

stimulated a big interest in issues related to the 

reliability, quality and safety of the service offered. 

These aspects characterize altogether the so-called 

system "dependability", which is also defined in 

devoted standards [1-3]. Its definition requires the 

introduction of the probabilistic risk and safety 

concept and of methodologies suitable for their 

evaluation. The systematic procedure proposed by the 

recent European legislation on the trustworthiness of 

constrained guide transport systems provides for the 

classification of dangerous events according to the 

severity of the possible consequences of their 

occurrences, along with their probability of 

occurrence. The combination of these two aspects 

defines the risk and/or safety related to the single 

event examined [5-13]. As here discussed, also 

system quality can be defined in a way which 

resembles the safety methodology. It should be noted, 

however, that while the definitions and methods for 

calculating reliability (and availability), as well as 

risk and safety, are well established, the topics related 

to quality have so far been addressed, even in the 

aforementioned standards, from a qualitative rather 

than quantitative point of view. In this perspective, 

the present work is focused on the analytical link 

between these quantities, with the specific aim to 

propose a Bayes estimation method for a new quality 

index that take into account the temporal evolution of 

the reliability features of the TS. First, it is considered 
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appropriate, also for the purpose of clarifying the 

terms used below, to recall some fundamental 

concepts and properties related to the reliability 

parameters of a renewable system. 

    In a technological reality in which the reliability 

features of the systems become increasingly 

important, the conventional criteria for the 

determination of RAM (reliability, availability and 

maintainability) standards for the TS must undergo - 

in the light of what has been said before - a careful 

critical examination. In fact, they are based on a 

traditional approach to reliability, and in particular of 

a "static" nature. For example, a typical reliability 

constraint required for such systems is that on the 

maximum number of faults in the time unit (or per 

km). However, this parameter uniquely identifies the 

reliability function only in the Exponential case; yet, 

only in the latter case it is the actual "fault frequency" 

of the system. In the general case, the latter is a 

function of time. A certain imprecise in the definition 

of the reliability parameters in the TS field has been 

highlighted in the literature, deriving from inadequate 

regulation and insufficient tradition in the use of 

RAM methodologies, as discussedin [12], a 

discussion briefly summarized here. In particular, 

[12] highlights the confusion that often occurs 

between the following quantities, used as identical 

(and identified with the term "failure rate"): 

- the "fault frequency" , that is the reciprocal of the 

MTTF (average time to failure); 

- the "failure rate" function, which is the limit of a 

(conditional) probability of failure; 

- the "failure intensity" function, i.e. the 

(instantaneous) frequency of faults. 

Only the first of these parameters is a constant, the 

other two being functions of time that express the 

temporal evolution of the "aging" of the system, as 

discussed below. In the following, the "reliability 

function" of a given system in the time interval (0, t) 

is indicated with R (t). As well known [16],  

this function is defined as the probability of the event 

(T> t), where T is the random variable (RV)) 

"operating time" of the system. The mean value of T- 

or the MTTF of the system - is indicated with m: m = 

E[T]. By definition [1-5], the function "failure rate" is 

a function of time h(t) which, multiplied by a time 

interval dt, provides the probability of failure in (t, 

t+dt), conditioned on the hypothesis that the system 

has been working up to the instant t. It is known that, 

if T is continuous, at any time t> 0 in which the 

probability density function (PDF), f(t), of the 

operating time T is defined, results: 

  h(t)=f(t)/R(t)    (1) 

 

This function is generally - contrary to what is 

sometimes reported - different from the (average) 

number of faults in the time unit, i.e. the "fault 

frequency", both in steady state and in the transient 

period. This may be better understood if the study is 

performed  with respect to a succession of RV, i.e. 

the times of operation between two successive 

failures, i.e. in terms of the random "counting" 

process of failures [5-8,17]. This process, indicated 

with N(t), represents the number of faults in (0, t), for 

a system that starts working in t = 0, in the event of 

negligible repair times and of time between 

independent failures and identically distributed; the 

statistical mean of N (t) - called "renewal function" - 

is a function of time, indicated by M(t). The temporal 

derivative of this function, m(t), represents the 

(instantaneous) frequency of faults, calculated in the 

instant t. It, called "failure intensity", can be derived - 

in terms of Laplace-transforms - from the relation: 

 

 m*(s) = f *(s)/[1-f *(s)]  (2) 

 

where m*(s) and f*(s) are the Laplace-transforms of 

the function m(t) and of the PDF f(t) of the time 

between two faults, T, of the system under 

examination [5]. The functions h(t) and m(t) are the 

same if and only if the distribution of the time to the 

fault turns out to be of Exponential type, in which 

case they are both constant, and equal to the 

reciprocal of the MTTF. Omitting details [5,12],  in 

this casethe failure process N (t) follows a Poisson 

distribution, with parameter  coincident with the 

three parameters mentioned above. The well-known 

Poisson probability law p(k,t) given by [5,17]: 

 

 
( )

( , ) ( )  ,       0,1,...,
!

k
t t

p k t P N t k e k
k

     
    

(3) 

 

In (1),ϕis the mean number of faults in the unit time. 

The mean and variance of the process N(t) are 

numerically equal and given by: 

 

t  Var[N(t)]  E[N(t)]      (4) 

 

Then, the dynamic index for quality service 

assessment of electrified transportation systems 

proposed in [12] is recalled hereafter. As previously 

mentioned, the reliability assessment is the major 

premise for facing the heterogeneous problem of the 

evaluation of the quality service of a generic large 
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complex system. It is customary that the quality be 

regarded as a function of the customer demand of the 

public transportation system. More specifically, the 

customer satisfaction is defined in terms of service 

"time punctuality". At this purpose it is useful to 

introduce the quality concept analogously to the 

safety concept [5], conceived as immunity level of 

the system with respect to the delays.  By this kind of 

approach, quality can be evaluated – as far as possible 

- in a quantitative way, avoiding the phraseological 

concepts which often leave the practitioner unaware 

whether a satisfying level of quality has been reached 

or not. 

As well-known [5], the most widespread definition of 

safety, with reference to a given time horizon, is the 

probability that the delay is not higher than a prefixed 

level. In other terms the system can be considered 

safe if harmful events  (which,in our case, are 

uniquely system’s faults) do not occur, or if in case of 

fault the consequent delay is acceptable, i.e. without 

compromising the system safety. 

Let us supposed to know (or estimate) the delay 

distribution related to each system’s fault, i.e. the 

(conditional) cumulative distributionfunction (CDF) 

of the delay W, defined as: 

 

F(w) =P(W<w)     (5) 

 

in which w is a “waiting time”.  Let us focus our 

attention on the delay amplitude occurring at time 

Tk:such amplitude is a random variable, here 

indicated as Wk. The proposed quality function is 

defined in order to count the number of RV Wkwhich 

exceed a givenextreme value zof delay. This can be 

accomplished by associating to the stochastic process 

N(t) and the random variables Wk (k=1,2,…,Nb(t)), 

the following stochastic process M(t) defined in terms 

of thesuccession of RV Ik , each being a Bernoulli RV 

denoting the event (Wk> z), i.e.: 

 

 I 1 if W

I 0 otherwise

k k

k

z  



  (6) 

 

Then, let us focus our attention only on the delay 

amplitudeslarger than z: these definethe following 

stochastic process: 

1 2 N(t)M(t) = [I   I ,…  I  ], if  N(t)>0

M(t) = 0, otherwise

 

  

 (7) 

In other words, M(t) is arrival process that counts 

the DA exceeding the “barrier value”z over (0,t). 

In the present case of a Poisson process for N(t), let 

us also assume that the RV Wk are assumed to be 

statistically independent and identically distributed 

with the common, time-independent, CDF of (5):  

WF(w) F (w) (W w) ,  k 1,2,......nkP         
 (8) 

Under the above hypotheses, by means of simple 

hypothesis  holds, with the following new value of 

the mean frequency: Fz)whereis the 

mean frequency of the base counting process N(t) 

(see (4)). So, the probabilistic distribution of  M(t), 

i.e. the probability that a number k of extreme PLA 

occurs in the time interval (0,t) is: 

   
 

, ( )  
!

k

qt

M

qt
p k t P M t k e

k

     (9) 

defining: 



 = mean fault frequency (i.e., expected number of 

faults occurrences for unit time);                                        

(10) 

q= 1 - F(z) = P(Wj>z) = exceedance probability (EP) 

of the value z by any single DA  Wj.          (11) 

 

The proposed quality index (QI), G(t,z), is defined 

as the probability that z is never exceeded over (0,t): 

it is obtained as a particular case (k=0) of eqn. (10), 

i.e. the probability that no exceedance occurs in (0,t). 

 1 F( )
( , )  e

t z
G t z

 


          
 (12) 

In the following, eq. (12) will sometimes re-written, 

omitting the fixed parameter z, in the following form 

which of course is identical to (13): 

( ) qtG t e    (13) 

Another meaning of the QI may be introduced, if one 

definesthe following succession of RV 

Y(t) = max (W1, W2,…, WN) , if N(t)= N>0    (14) 

   Y(t) = 0, otherwise (15) 

 

It is readily shown that: 

 

G(t, z) = P[Y(t) < z ]         (16) 

 

In other words, G(t, z) is the probability that the 

maximum delay never exceeds z over (0,t), which is 

consistent with theintuition. As a case study, it is 

reported a simple example whose figures are deduced 

from [15], which deals with the estimation of the rate 
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of occurrence of failures related to the train system 

within the UK. For a certain kind of failure, 66 events 

were observed in the last 6 years, leading to an 

estimate of  66/6 = 11/year = 0.92/month. 

Assuming, as an example,that the DA are 

Exponential RV with mean value E[W]= 30 min., the 

CDF F(z) of (12) is expressed by (17), in which = 

1/E[W]=1/min. 

F( )  1- e , 0zz z 
     

 (17) 

 

Fig. 1 The QI, G(t, z), vs. time t in months  in the case study with 

0.92/month and z=4,8,16 min. corrisponding to the three curves 

shown, from the lowest one (z =4, min.) to the highest one (z =16 

min.). 

In Fig.1, three curvesof the QI of (12) are depicted for 

such case, as a function of time t in moths, and three 

different values of delay z (here in minutes). Of 

course – as well apparent from the general expression 

of (12) -  the QI always decreases with time, while it 

increases if z increases (accepting a greater maximum 

delay z implies increasing the probability that such 

delay is not exceeded). 

IV. A BAYES INFERENCE METHOD FOR THE 

STOCHASTIC QUALITY INDEX OF 

TRANSPORTATION SYSTEMS 

Two Bayes inference methods for the QI estimation 

are proposed here,both by means of the “Negative 

Log-Gamma” (NLG) distribution, according to the 

kind of information available on the 

DAdistribution.The NLG PDF is the PDF of a RV in 

(0,1), defined by S=exp(-X), where X has a Gamma 

distribution [16-18]. It is recalled that the PDF of 

Gamma  distribution with positive parameters  

andshape and scale parameter respectively), is 

expressed, for x>01, by: 

11
( ) exp

( )

x
f x x

  

  
  

  

 
(18) 

Such PDF will be denoted as gampdf (x,. The 

PDF ofS=exp(-X), by ordinary rules of RV 

transformations [16-18] is expressed by  (“log” 

denotes natural logarithm): 

 
1(1/ ) 11

p(s) log ,       0 s 1
( )

s s


 

   


      

(19) 

Bayes Inference allows integration of two sources of 

knowledge: experimental data from the field and 

prior knowledge, which in practice always exists in 

TS applications. The two sources are integrated by 

adopting Bayes theorem [15,16].  For the purpose of 

present application, the Bayesian estimation of the 

above QI can be carried out in a relatively 

straightforward way, here illustrated, developing – 

with some innovations - a methodology already 

adopted for a safety index in [13], as coherent with 

the theoretical approach followed in the present 

study.In the Bayesian setting, the (generally 

unknown) parameters (q,) are considered as RV, so 

they are denoted here by capital letters: Q and Φ 

(except when they are arguments of functions). So, 

the starting point for the requested estimation process 

is a joint prior PDF g(q,) for the parameters Q and 

Φ. The information conveyed in such PDF can be 

integrated and updated with field data – denoted by D 

– by the below reported Bayes’ theorem: 

CqDLqgDqg /),(),(),(  
               

(20) 

where: 

L(D|q,) denotes the Likelihood  of the data D 

conditional to the parameters (q,);C is a constant 

(with respect to the parameter values): 

 dqdqDLqgC ),(),(
0 0

 




               

(21) 

As well known, the best Bayes estimate  - in the mean 

square error sense - of a given function =(Q, Φ) is 

given by the posterior mean E[(Q, Φ)|D], obtained 

by integrating the product of H with the posterior  

PDF of (19). First, we will introduce the case in 

which the DA distributionis known, and then we will 

briefly recall a more general methodology which can 

be applied, following [13], when the DA 

distributionis unknown. 

                                                        
1
The PDF is assumed zero for negative values of x. 
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- Known Delay Distribution  

 

Let the DA distributionbe known, i.e. the EP:  q = 

P(Wj> z) = 1 - F(z), being F(z) the CDF of any RV 

Wj, is known. For sake of illustration, let the CDF of 

the DA be an Exponential one (but the method here 

illustrated is in principle extensible to any kind of 

CDF), i.e.: 

F( )  1-e , 0zz z 
              

(22) 

Being a positive knownconstant, such as the mean 

DA is E[W]=1/. So, q=e-βz, and the QI is expressed 

as: 

 G ,   e
zt et z

                  (23) 

In such case, the only unknown parameter, to which 

assign a prior PDF, is the  positive parameterϕ, mean 

fault frequency. 

This can be done in two ways. If the process of faults 

is observable, and this implies that the Exponential 

times between failures Tjare observable, then the 

Bayesian estimation of ϕ , and thus of the above QI is 

carried out in a  straightforward way adopting the 

well-known ”conjugate” Gamma prior PDF for ϕ, by 

trivial computations [16].  

If, instead, available data are only those regarding the 

EP, i.e. the occurrences of DA, the estimation of the 

QI G(t,z) can be regarded, for a fixed time interval t, 

as the estimation of the Gumbel [18]  CDF G(t,z) 

seen as a function of z.Indeed, denoting by Y(t) as 

in(14)  themaximum  DA, the QI G(t,z) is the CDF of 

Y(t) evaluated atthe value z of delay, as apparent 

from (16). Let Y be the generic RV “maximum  DA“ 

of a given sample. For purpose of a 

straightforwardBayes estimation, it is convenient to 

work with the auxiliary variable X=exp(Y).It is well 

known [18], and easy to verify, that being Y a 

Gumbel RV with  CDF G(t,z), then X is an “Inverse 

Weibull” RV with CDF [14,18]: 

( )( ; , ) t xF x e
 

    (24) 

Also in this case, inference on parameter Φ can be 

performed adopting the conjugate Gamma prior PDF. 

A more practical, but equivalent approach can be 

adequately adopted since generally no physical 

meaning can be usefully exploited in formulating 

prior knowledge on such parameter. Indeed, as 

discussed in [14], the analyst does not think in terms 

of parameters, but expresses his technical knowledge 

in terms of more practical concepts, such as some 

value of the CDF of (24), implying a corresponding 

information for the QI. For these reasons, a practical 

approach is to use a “Negative Log- Gamma” prior 

CDFof (24), which implies a Gamma prior PDF for 

the parameterϕ[14], as can be deduced from the more 

general case examined in the following sub-section. 
 

- Unknown Delay Distribution  

This is a more general case, of which the previous 

one can be considered a particular subcase, so the 

mathematics is illustrated here with more details, as 

meant to illustrate both cases. The Bayes inference 

here proposed, following [13], uses well known 

“conjugate” [15-16] priors for the RV Q and Φ, i.e. 

the Beta prior PDFfor Q and the Gamma prior PDF 

for Φ. The two RV are moreover assumed to be 

statistically independent, so that the prior joint PDF 

g(q,) is given by2: 

 

),;(),;(),( 0000  ngampdfsrqbetapdfqg   (25) 

 

(see Appendix for the definition of the function 

betapdf. Function gampdf is defined after (18). 

According to the Bayes method, the parameters’ 

values (r0,s0,n0,0) are deduced from prior 

information, i.e. previously collected wind data or 

experts’ judgements. Such prior data are updated by 

means of field data.As shown in [13], the posterior 

PDF are easily seen to be again Beta and Gamma, 

and the product QΦ is still Gamma distributed (or 

approximately so), so that also the  posterior PDF of 

the QI is again NLG.  

V. COMPARISON OF CLASSICAL AND 

BAYESIAN ESTIMATION TROUGH NUMERICAL 

SIMULATION 

For brevity, here only the more general case of 

unknown delay distribution is illustrated.A large set 

of numerical experiments have been performed by 

generating simulatedsamples - obtained by means of 

Monte Carlo simulation [19]- with the purpose of 

showing the efficiency of the proposed Bayes 

estimation of the QI.The simulations were conducted 

for various sample sizes n (number of faults), and 

various input data values.  Data were generated as 

follows: 

- Data on the observed number of faults in a 

given time interval were generated by a Poisson 

Process of mean frequency Φ (randomly generated 

previously  according its prior Gamma PDF). 

                                                        
2 The suffix “0” is used to denote prior PDF parameters. 
See also [13] for more details 
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- Data on the observed exceedance number m 

were generated by a Binomial RV with parameters 

(n,Q), being also Q randomly generated according its 

prior Beta PDF.  

For each sample size n, a number of N=104 

replications has been effected; in particular, the results 

for a wide range of sample-sizes (from n=10 to 

n=120)  are reported in Tab. 1, in terms of MSEB 

(Mean Square Error of the Bayes estimator), MSEL 

(Mean Square Error of the  ML estimator) and REFF 

(defined as MSEL/MSEB). All above indexes are 

dimensionless (being the QI to be estimated a 

probability).The “REFF” index is the Relative 

Efficiency of the Bayes estimator with respect to the 

ML estimator. The above “Mean Square Errors” have 

been obtained at the end of each simulation as the 

averages over the N sampled estimator’s square 

errors. The above-defined quantities are based on the 

concept of Mean Square Error (MSE) of an estimator. 

Given an estimator, ζ °, of the parameter ζ , its 

theoretical MSE, is – as well known [16-18] - defined 

as the expected value of [(ζ° -ζ)2]. Such quantitywas 

evaluated at the end of each simulation case study by 

means of the ordinary large-sample estimator, i.e. the 

“observed” MSE (briefly, MSE in the sequel), 

evaluated on the estimated  (°j)and “true” (j) values 

of the parameter of the N simulated samples as: 

2

1

1
 (ζ  ζ )

N

j

MSE
j jN 

  
 

  (26) 

 

TABLE I.SIMULATION RESULTS SHOWING THE 

EFFICIENCY OF THE BAYES ESTIMATOR OF THE QI. 

n MSEB MSEL RABB RABL MREB MREL R1 R2 REFF 

10 0.0372 0.0832 0.2750 0.4022 2.3479 1.730 1.463 0.730 2.237 

50 0.0343 0.2501 0.2632 0.5503 1.9407 7.326 2.091 3.623 7.292 

80 0.0302 0.2452 0.2275 0.4448 1.9729 8.019 1.955 3.831 8.116 

100 0.0294 0.2097 0.2469 0.3630 1.7987 7.058 1.470 3.908 7.133 

120 0.0243 0.1680 0.1912 0.3498 1.3914 9.451 1.829 6.827 6.914 

Legenda: n= sample size; other terms are defined in the 

text. 

In the above eqn. and the following ones, j 

(j=1,..N) is the “true” parameter value correspondent 

to the j-th n-dimensional simulated sample generated 

by the simulated values of (Q, Φ) for that sample, and 

(°j)its Bayes (or ML) estimate.The ratio REFF is the 

most widely adopted measure of the “relative 

efficiency” of the Bayes estimator with respect to the 

ML estimator: the more it exceeds unity, the more 

efficient is the Bayes estimate when compared with 

the ML estimate.Other significant quantities here 

evaluated, in order to assess the performances of the 

estimates, are: 

• RABB: Relative Average Bias of the Bayes 

estimator; 

• RABL: Relative Average Bias of the ML 

estimator; 

• MREB: Maximum Relative Error of the 

Bayes estimator; 

• MREL: Maximum Relative Error of the ML 

estimator. 

The relative bias of an estimator, °, of the 

parameter  can be defined as: (E[°]-E[])E[]. 

Therefore, as an overall “sample” measure of the 

relative bias, the “Relative Average Bias”, RAB, is 

used here, in which the quantities E[] and E[] are 

evaluated through their estimated values – i.e. their 

averages - at the end of each simulation case study. 

Similar computations wereperformed for the MRE 

indexes. Both RAB and MRE are evaluated in terms 

of absolute values. Also, the following 

(dimensionless) ratios are reported, as useful synthetic 

measures in evaluating the “precision” of the Bayes 

estimates: 

 

R1=RABL/ RABB;   R2= MREL/ MREB 

 

Among the many performed simulations, the results 

shown in table I refer to theafore mentioned available 

ST data (see end of section 3), so that the prior PDF of 

this application were chosen as follows: Φ has a 

Gamma PDF with mean =0.920month-1and  = 

0.092month -1;  (i.e. the SD is 10% if the mean); Q, 

the EP  of a given threshold level z, has a Beta 

probability density function with =0.080 and = 

0.027. These values imply the following prior 

parameters in (25)3: 

 

n0  = 100; 0 = 0.0092; r0  = 8; s0 = 92.  

 

In Table I, the values of MSEB, MSEL, RABB, 

RABL, MREB, MREL, R1, R2, REFF, relevant to the 

Bayes and ML estimates of  the QI  are reported as a 

function of the sample size n considered in the 

simulations. In the first column, the sample size is 

reported, i.e. the number of (simulated) fault events, n. 

The reported results point out the efficiency of the 

proposed Bayesian approach, evidencing that the 

Bayes estimate errors, both in terms of mean square 

                                                        
3
 A greater uncertainty generally exists on Q: such values imply 

indeed that the its SD is about 33% if the mean. In terms of  prior 

percentiles: the 0.05 and 0.95 percentiles of Q are: 0.04 and 0.13, 

so that: P(0.04<Q<0.13)= 0.90, a large “credibility interval” 
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error (as measured by MSEB), and of relative errors 

(RABB, MREB) are reasonably limited. This last 

aspect, regarding the “precision” of the Bayes 

estimates, is shown also by the relative indices R1 and 

R2,  always larger than 1 except for a case with small 

sample size (n=10). The relative efficiency with 

respect to the ML estimate is always larger than 1, not 

only for small sample sizes as generally happens [16], 

so that the ML estimates are outperformed by the 

Bayes ones. 

VII. CONCLUSIONS  

In the paper, a stochastic model is adopted in order 

to describe and estimate reliability and quality 

assessment of TS. The model has two basic features: 

1) as a probabilistic model, it exploits results from 

stochastic process theoryrelatedto safety analyses; 2) 

from the point of view of statistical estimation, it 

assumes no particular probability model for the delay 

amplitude, thus proving to be “robust”. Bayesian 

estimation of the above QI is the novel feature of the 

paper, based upon Gamma and Beta prior 

distributions respectively for fault frequency and 

“exceedance probability”, leading to a Negative Log-

Gamma distribution for the QI. A large set of Monte 

Carlo numerical experiments have been performed, 

yielding excellent results both in terms  of efficiency  

and precision, with reference to very different sample 

sizes. Further studies seem opportune to highlight the 

TS system reliability and quality, also in terms of 

“capacity”[22-26], as well as exploring the use of the 

empirical Bayes method, which has found recent 

railway application [15]. 

 

APPENDIX – THE BETA PDF 

 

The Beta PDF [16-18] is defined as follows for the 

argument q in the range (0,1), which is indeed a 

probability here: 

1 1( )
betapdf ( ; , ) (1 ) , 0 1

( ) ( )

a ba b
q a b q q q

a b

  
   
 

 (A.1) 
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