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Abstract: This paper presentsa novel data flow architecturethat utilizes data from engineering simulations to 
generate a reduced order model within Apache Spark. The reduced order model from Spark is then utilized by 

anevolutionary algorithm in the optimization of an industrial system component. This work is presented in the 

context of the shape optimization of a heat exchanger fin and demonstrates the ability of theengineering 

simulation, the reduced order model and the evolutionary algorithm to exchange data with each other by 

utilizing Spark as the common data-processing framework. In order to enable a user to monitor the input design 

parameter space,self-organizing maps are generated for visualization. The results of theevolutionary 

optimization utilizing this data flow are compared with results from invoking high-fidelity engineering 

simulations. This novel data flow architecture decouples the evolutionary algorithm from the reduced order 

model and allows improvement of the optimization results by continuously augmenting the reduced order model 

with data from the evolutionary algorithm.Additionally, when constraints on the optimization algorithm are 
modifiedthe evolutionary algorithm canadapt and evolve good solutions. Themethodology presented in this 

articlealso makes it feasible to simultaneously tune evolutionary optimization experiments along with 

engineering simulations at a relatively low computational cost. 

Keywords: Engineering optimization; Evolutionary algorithms;Big Data, Apache Spark;Self-organizing maps; 

Engineering simulation data 

 

 

I. Introduction 
Evolutionary algorithms (EAs) are an 

established technique to solve engineering design 

and optimization problems when the search space is 

discontinuous and the design variables cannot be 

parameterized (Ashlock, 2006). When the fitness 

function is multi-modal, EAs are efficient at finding 

globally optimal solutions due to their stochastic 

nature (Liu et al. 2015; Ashlock, 2006; Deb, 2001; 

Holland, 1992). EAs have been utilized successfully 

for solving various engineering problems including 
inverse design (Liu, 2015) and design optimization 

problems(Ly, 2001; Suram, 2008; Yepes, 2017;Xu, 

2016). However, there are several instances where 

the fitness function evaluation for engineering 

problems is time-consuming and computationally 

expensive, especially when engineering simulations 

have to be run to evaluate fitness values. Examples 

of engineering simulations includemethods like the 

finite element method, computational fluid 

dynamics, or other multi-physics based techniques. 

The results from complex engineering simulations 
are utilized by engineers to synthesize and design 

products while considering user requirements. 

However, the complexity and the time-

consumingnature of simulations make it challenging 

for them to be used in an engineering design 

optimization process. This causes engineering design 

optimization to be performed towards the end of the 
design cycle making the optimization process linear. 

Any iterations to the design can thus become 

challenging and time-consuming (Ullman, 2009). In 

such cases, EAs become restrictive due to the need 

for a large number of fitness evaluations 

(Peremezhney, 2014; Suram, 2006; Lohan, 2015; 

Dolci, 2015). 

In past research efforts, proper orthogonal 

decomposition (POD) based reduced order models 

(ROMs) have been utilized to speed-up fitness 

evaluations. The POD based method can utilize big-
data created by complex simulations to construct a 

data-driven model that can compute approximate 

solutions several orders of magnitude faster than the 

time taken to run a simulation.Dolci et al. (2015) 

have studied the effectiveness of the POD method as 

a surrogate model for solving aerodynamic 

optimization problems. They also applied design of 

experiments to sample the input parameter space to 

create an adequate set of initial data. Jansen et al. 

(2017) solve the problem of well-control 

optimization by constructing a POD based ROM and 

utilizing it in conjunction with an adjoint-based 
method to minimize the fitnessfunction. They also 

highlight the need for further research to determine 
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the validity range of a ROM and the investigation of 

ROM re-training. Liu et al. (2015) compared several 

inverse methods to design enclosed spaces and 

found that the POD based reduced order models in 

conjunction with a genetic algorithm was the most 

effective in finding global optima. Several other 
examples of utilizing POD based ROMs can be 

found in the literature (Xiao et al. 2015; Castellani et 

al. 2016; Ushijima et al. 2015; Reddy et al. 2017), 

where the researchers have reduced computational 

time to solve optimization and design problems.  

In the approaches studied in the literature, 

researchers have constructed the ROM prior to 

including it in an optimization process. This 

approach has two primary drawbacks:  

a) Knowledge of the design space: It 

assumes that the design engineer has a 

thorough understanding of the design 
space and can focus the collection of 

datasnapshotsappropriately. For 

relatively simple problems, engineer 

insight can help focus the process of 

snapshot collection,however,this can be 

challenging in complex multi-

parameter optimization problems. 

Using an inadequate ensemble matrix 

can result in directing the optimization 

algorithm towards a sub-optimal set of 

solutions. If the design parameter space 
changes, the ensemble matrix must be 

reconstructed and the optimization 

process re-started.Furthermore, in an 

evolutionary algorithm, since the 

population is initialized randomly it 

might be challenging to encompass the 

entire parameter space in the ROM. 

b) Tightly coupled optimization:Once the 

ROM approximation is constructed, the 

optimization algorithm needs complete 

information of the ROM to perform 

evaluations of the fitnessfunction. 
Thus,afterthe optimization process 

begins, changes to the underlying ROM 

are not possible in real-time.  

Additionally, the optimization process 

must be restarted each time the ROM is 

updated since the ROM is embedded in 

the EA.  

This article takes an approach towards integrating 

the data flow between the engineering simulation 

and optimization processes using Apache Spark. The 

integrationof data flow enables a dynamic coupling 
where data and results can be utilized to enhance the 

simulations as well as the results of the design 

optimization. The data from engineering simulations 

is stored in an Apache Spark DataFrame (Zaharia, 

2016), andis utilized to create a data-driven reduced-

order model (ROM)by leveraging the machine 

learning library MLlib within Spark (Meng, 2016), 

as described in Section 3. Fast computations of time-

consuming fitness function are performed by the 

ROM, thus mitigating performance bottlenecks in 

the EA. Additionally, after each generation in the 

EA, anengineering simulation is triggered with the 

best fitness chromosome in the population, thus 

enhancing the accuracy of the ROM. Self-organizing 
maps (SOM) enable visualization of the design 

parameter space during the evolution process, which 

produces a 2-dimensional output of the multi-

dimensional design parameter space. The output 

from the SOM enablesa user to visualize the design 

parameter space, and manually trigger simulations as 

needed, that cover portions of the design space that 

have not been covered in the initial ROM training 

set. Thus, the ROM can be constructed in an 

incremental manner in lieu of attempting to create it 

in a comprehensive mannerprior tostarting the 

optimization process.  
In summary, the past research has primarily involved 

“embedding” the ROM into the EA. Thus, when new 

simulation data is added the ROM has to be 

repeatedly re-computed and included in the EA to 

find a new optimal design. This multi-step 

processmakes it challenging to update the EA results 

based on newer simulation data. This article explores 

the use of Apache Spark to store, compute and 

update simulation data as well as ROMs to create a 

system that enablesdecoupling the EA from the 

ROM for greater flexibility. The novelty of this 
approach lies in the data-flow architecture that 

allows results from the EA to be seamlessly 

incorporated into the ROM. Thus, the ROM can be 

updated and enhanced without re-starting the EA 

process.  

 

II. Background 
 

This section briefly outlines the techniques utilized 
in this work viz. evolutionary optimization, reduced 

order models and self-organizing maps.  

2.1. Evolutionary Algorithm based Optimization 

Evolutionary algorithms are computational models 

of the evolution process in nature. An evolutionary 

algorithm starts with a randomly initialized 

population of chromosomes and utilizes the concepts 

of selection, crossover and mutation to evolve the 

population towards higher fitness values. A fitness 

value is a metric that represents the quality of a 

chromosome in the population. In the context ofthis 

work,fitness valuerepresents a numerical value 
obtained by evaluating a fitness function. A real-

valued EA is considered in this research;thus, the 

fitness values and chromosomes are real-valued. A 

generic flowchart representing the general construct 

of a simple evolutionary algorithm is shown in 

Figure (1). EAs have been researched and applied 

extensively in the literature and further details on the 

subject can be found in the references (Ashlock 

2006; Deb, 2001; Holland, 1992). 
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Figure (1). Flowchart of a generic evolutionary algorithm.  

 

2.2. Reduced Order Models 

Data-driven reduced order models are derived from computational data and are utilized in lieu of detailed 

computational models in order to reduce time to solution. ROMs are less accurate than the detailed high-fidelity 
computational models, but have the advantage of faster time to solution(Ly, 2001; Suram, 2008; Reddy 2017). 

Several ROM techniqueslike Krylov subspace, balanced truncation and proper orthogonal decomposition have 

been developed, studied, and applied successfully to several engineering problems. Proper orthogonal 

decomposition (POD) technique is utilized in this article and the remainder of this section describes the 

technique.  The POD technique, also called principal components analysis (PCA), is based on the singular value 

decomposition (SVD) of a matrix. For a matrix A, which is also the training set on the available data, the SVD 

is defined as shown in Equation (1).  

A = USV
T
 (1) 

The orthogonal matrices U and Vconstitute the left and right eigenvectors respectively. The matrix S is a 

diagonal matrix of singular values arranged in descending order of magnitude. The magnitude of each singular 

value defines the relative importance of the corresponding eigenvector. This is an important property of the 

SVD technique that can be utilized to select dominant axes of eigenvectors onto which the matrix A can be 

projected. The left eigenvector matrix U is projected onto the original data matrix A to compute the coefficient 

matrix for the ROM, as shown in Equation (2).  

C = UA (2) 

Once the matrix of coefficient vectors C is computed, predictions for design parameters 𝒗   outside the training set 

are calculated by finding two coefficient vectors that encompass 𝒗    using a cosine similarity measure (Steinbach, 

2000). Once the encompassing vectors 𝒗𝑳      and 𝒗𝑹      are found, the corresponding coefficient vectors 𝒄𝑳     and 𝒄𝑹       are 

selected from the C matrix. An interpolated coefficient vector 𝒄𝑷      is computed using as shownin Equation (3). 

𝒄𝑷     = 𝒄𝑳    + (𝒄𝑹     − 𝒄𝑳    )
 𝒗   − 𝒗𝑳      

(𝒗   𝑹 − 𝒗𝑳     )
 

(3) 

The coefficient vector 𝒄𝑷      is multiplied with the left-eigenvector matrix to compute the final prediction 𝒑   as show 
in Equation (4).  

𝒑   = 𝒄𝑷     𝑼
𝑻 (4) 

The SVD computation in Equation (1) is the most computationally expensive operation in this technique, and 

must be computed only when there is an update to the training data. An approximate ROM solution can be 

easily computed using Equations (3) and (4), both of which are computationally inexpensive operations. Thus, 

POD based ROM techniques are approximations computed from high-fidelity simulation data to reduce time to 

solution in lieu of computationally expensive simulations. Further details on the POD technique can be found in 

the literature (Kirby, 2000; Gunzburger, 2002).  

In the context of this article, every time the matrix A gets updated with new simulation data the SVD can be re-

computed using MLib and the coefficient matrix is updated according to Equation (2) and all subsequent ROM 

computation are performed with the updated coefficients.  

 

2.3. Self-Organizing Maps to Update Input Space 

Self-organizing maps (SOMs)can represent high-dimensional data in lower-dimensional space i.e. typically in 
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two or three-dimensional space (Stefanovic, 2011). SOMs have been utilized in this article to visualize the high-

dimensional input parameter space in two-dimensions at various stages during the evolutionary optimization 

process. A SOM is produced with the input design parameters and the unified distance matrix representation of 

the SOM is utilized to study the distribution of the input space and is leveraged by the user to execute additional 

simulations. These simulations are inturn stored in Spark to augment the existing data. An example of a unified 

distance matrix is shown in Figure (2), where the SOM has been recomputed after an update to the design 
parameter space. The darker regions represent larger distances in the input space.  

 

 
Before 

 
After 

Figure (2). Update to the unified distance matrix with updates to input parameter space. 

The addition of an additional design in the input space changes the distribution of the unified distance matrix. 

This can be confirmed by the reduction in the darkly shaded regions on the right. The dots in Figure (2) 

represent the design parameter vectors in two-dimensional space. Thus, on visual observation of the unified 
distance matrix, the user can understand the representation in the input space and can opt to augment the input 

parameter space with new simulation data. Additional details about the technique can be found in the literature 

(Stefanovic, 2011; Ritter, 1992). 

 

III. Data Flow Architecture using Apache Spark 
The sequence of steps starting from the results of the engineering simulation to the evolutionary 

optimization can be considered a series of successive transformations on data,and hence the overall architecture 

can be referred to as a data flow architecture. At each step, a transformation is appliedto the data from the 

previous step. The evolutionary algorithm finally utilizing the results from the ROM. Also, during the evolution 
process, elite chromosomes can be utilized to augment data used to create the ROM. This section describes the 

data flow architecture that has been developed utilizing Apache Spark, in detail, as shown in Figure (3). 

 
Figure (3). Data flow architecture.  
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A key advantage of Apache Spark in this work is its 

ability to process data stored in a distributed file 

system. Engineering simulation data is generated 

and stored on a distributed file system and Apache 

Spark can compute the ROM without moving data 

to a separate cluster. The SVD computation is the 
most computationally expensive operation to create 

the ROM. Apache Spark utilizes the MLib library to 

perform a distributed SVD computation with all the 

engineering simulation data in place. It must be 

noted that this is an improvement from the 

methodologies discussed in prior research in this 

field where the simulation data has to be moved to a 

single node to construct the ROM.  

At the beginning of the data flow, simulation data is 

stored in a Spark dataframe. In addition to the 

simulation data, the design parameters that define 

each simulation model are also stored in a separate 
dataframe within Spark. This information is utilized 

to compute the ROM (using Mllib) and the 

interpolation coefficients as described in Section (2). 

After the ROM is computed it can be used by the 

EA to evaluate the fitness of chromosomes in the 

population.Thus the data-flow approach decouples 

the construction of the ROM from the execution of 

the EA.  

Itrequires the development of the following: 

 A process to enable adding engineering 

simulation data to a Spark dataframe.  

 A mechanism to trigger updates to the 

ROM based on new data. This also 

involves storing the updated A and U 

matrices within Spark.  

 An EA process that can get updated ROM 

coefficients and eigen-vectors from Spark.  

 A process that can utilize the design 

parameter data and organize it using a 

SOM.  

Step 1: Add Simulation Data to Spark 

This is the first step in the data flow that transfers 
data from engineering simulations to a Spark 

cluster. This step of the data-flowmust have the 

ability to read data in the format emitted by the 

engineering simulation, connect to the Spark cluster 

and append the data to a specified dataframe or a 

resilient distributed dataset(RDD). In this article, the 

simulation computes temperature distribution data in 

comma separated value format which gets added to 

Spark.  

Step 2: Compute SVD and ROM Coefficients 

As soon as simulation data is updated from Step 1, 

the ROM needs to be recomputed so that the ROM 
coefficients and associated matrices can be updated 

to reflect changes to the data. This is accomplished 

by utilizingthe concept of a trigger in Apache Spark 

2.2, i.e. specifically the ProcessingTimeAPI.The 

trigger allows the computation of the SVD, which is 
computed usingthe MLlib library in Spark, and 

atomically updates the dataframes that contain U 

and A matrices on a periodic basis. 

Step 3: Enable EA to read ROM coefficients and 

Umatrix 

The updated ROM parameters and associated eigen-

vectors must be utilized by the EA so that the 

optimization can continue with the latest updates to 

the underlying simulation data. At the completion of 
every generation, the EA updates its cached versions 

of the U and A matrices and thus has access to the 

latest ROM. It must be noted that there is a lag of 

one generation between the cached version of the 

ROM with the EA and the version in Spark. Also, 

any user triggered updates to the simulation data 

also get incorporated into the EA.  

Step 4: Compute SOM of design parameters to 

visualize 

Every time new simulation data is added, the input 

design parameter space also changes and the 

corresponding dataframe is updated.  The SOM and 
the associated unified distance matrix are 

recomputed with the addition of new inputs for 

visualization and analysis by the user.  

Step 5: Queue design parameters for simulations 

In addition to the above steps, thebest chromosome 

from each generation of the EA isutilized to run 

anengineering simulation and append the generated 

data to Spark. This enables additional simulation 

datasets to be added without explicit user 

intervention and as the EA proceeds with 

optimization,the training dataset for ROM 
generation also gets augmented. The simulation 

solver is invoked asynchronously via a message 

queueing system.  

Thus,the optimization, the numerical simulations 

and the ROM updates can occur 

independently,while each of these componentsis 

also seamlessly updating the outcomes of the other 

components. It should also be noted that in the case 

where the EA is invoking the ROM, the update 

frequency through the queue can be high and long 

simulation times can slow down the process of 

updating data to Spark and in turnfeedback to the 
ROM. In such cases, depending on the run time of 

the engineering simulation the EA can be paused for 

a brief period or the number of generations for 

evolution can be set to be large. This case is 

however not considered in this article.  

The following section discusses in detail an 

engineering application that employs the developed 

Spark-based data flow architecture to optimize the 

shape of a heat-exchanger fin.  

 

IV. Application and Results 
The architecture developed in the previous section 

has been applied to a heat exchanger fin shape 

optimization problem. Heat exchangers are critical 

in removing heat from industrial equipment and 

utilizedin chemical plants, manufacturing plants, 

refrigeration and electronic equipment. The 

objective is to find the optimal shape of the fin that 

enhances heat removal from a heated surface. This 
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problem has been studied extensively in the 

literature and several references are available that 

discuss various aspects of heat-exchanger fin design 

(Incropera, 2002; Suram, 2006; Özisik, 1994).  

4.1. Problem Description 

In the example discussed in this article, a steady-
state heat exchanger is considered where the fluid 

surrounding the fin is assumed to be air.The lateral 

surface of the fin can be curved and it extracts heat 

from a base plate. Some examples of heat-exchanger 

fins of varying profiles are shown in Figure (4). The 

geometry of the fin has been converted to non-

dimensional form by dividing each dimension by the 

length of the fin. Thus, the fin has unit length and all 

other dimensional parameters are less than one, 

which helps constrain the search space of the EA 

optimization. A two-dimensional system is 

considered and the engineering simulation of heat 

transfer in the fin at steady-state is performed by 
solving the governing partial-differential equations 

as shown in Equation (5a) and subject to the 

boundary conditions shown in Equations (5b-d), 

where n


is the surface normalalong the surface 

exposed to air and q is the heat flux. 

  

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
= 0 

(5a) 

 𝑘
𝜕𝑇

𝜕𝑥
 
𝑙𝑒𝑓𝑡

= 𝑞 

𝑘  𝜕𝑇

𝜕𝑛  
 
𝑎𝑖𝑟  𝑏𝑑𝑟𝑦

= −ℎ 𝑇 − 𝑇𝑎𝑖𝑟   

 𝑘
𝜕𝑇

𝜕𝑦
 
𝑙𝑜𝑤𝑒𝑟

= 0 

(5b) 

 

(5c) 

(5d) 

To simulate the temperature distribution in the heat-exchanger fin, the geometry of the heat-exchanger fin is 

discretized and the governing partial differential equations are solved using the finite-difference technique 
(Incropera, 2002). The number of grid points for simulation were chosen systematically by doubling the number 

of grid points until the change in the accuracy of the solution is negligible. The resulting grid dimensions are 

401x401 grid resulting in approximately 161000 grid points. It must be noted that for problems involving 

coupled fluid dynamics and heat transfer the number of grid points can be higher. The techniques presented in 

this article can be applied to larger grid sizes from complex simulations. A contour plot of the temperature 

distribution in a representative fin is shown in Figure (3b), which shows a gradual decrease in the temperature 

along the x-axis since the heated surface is along the left boundary. The scale below the contour plot shows the 

temperature in degrees Celsius.  

This engineering simulation code and the resulting data was utilized for optimization and to construct a ROM. 

Three types of fin profiles have been considered for optimization, i.e. 1st, 2nd and 4th degree polynomials. Each 

of these profiles are discussed in the context of the EA chromosomes in the next section. 

 
Figure (3b). Contour plot of temperature distribution in the fin.  

 

4.2. Chromosomes 

Figure (4) shows example shapes of each of the 1st, 2nd and 4th degree polynomial fin profiles and the structures 

of the corresponding chromosomes. The lengths of the chromosomes in each case are 4, 5, and 7 respectively. 

The larger chromosome lengths also represent a higher dimensional search space for the EA. Due to varying 

lengths of chromosomes, each shape design case is evolved independently. This also helps in maintaining 

diversity in the population by preventing the EA from selecting chromosomes from a higher-order shape 

dominating the population. In Figure (4), s represents the width of the heated base plate and b represents its 

thickness. The chromosome constitutes of distances along the y-axis,yiwhich are points on the curved surface of 
the fin that define the shape of its profile.  

Constraints are placed on the fin shape profiles to prevent the curvature from being too high as listed in 

Equation (6). The constraints on yi are a function of the width of the base of the fin, s, as shown in Equation (6) 
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and all the constraints are expressed in non-dimensional units. During fitness evaluation, if a chromosome does 

not respect these constraints, it is awarded a fitness value of zero thus penalizing the individual from progressing 

to the next generation.  

s  [0.05, 0.6] 

b  [0.001, 0.3] 

yi [0.05s, 0.9s]  0   yi 4 

(6) 

 

 

 

 
Figure (4). Examples of fin profiles and chromosomes.  

An additional metric yav, the average profile thickness is defined as shown in Equation (7), where n is the degree 

of the fin profile. It must be noted that this metric is not utilized in the optimization process, but only to analyze 

the results from the EA.  

yav= (𝑦𝑖)𝑖 /(𝑛 + 1) (7) 

4.2. Fitness Function 

For the heat-exchanger fin to be effective, it must enhance heat transfer from the heated base to the tip of the fin. 
Since the fin is assumed to be at steady-state, the overall heat transfer along the surface of the fin exposed to air 

is used as a measure of fitness. Equation (8) is used to compute the fitness of an individual in the EA, where a 

higher value of fitness implies that the individual has a better chance of moving to the next generation in the 

evolutionary optimization process. The fitness𝑓, as shown in Equation (8), is proportional to the total energy 

exchanged by the fin with the surrounding air from the curved surface, whereTSi is the temperatureon the 

discretized grid points along the curved surface of the fin and Tair is the surrounding air temperature. Since the 

thermal properties of the heat exchanger fin and air are assumed to be constant, the fitness can be evaluated as 

shown in Equation (8), where the range ofi is the total number of grid points along the curved surface of the fin. 

Fitness values are guaranteed to be positive i.e.  𝑇𝑠𝑖 > 𝑇𝑎𝑖𝑟  since energy is being added to the system along the 

base of the fin.  

𝑓 =    𝑇𝑠𝑖 − 𝑇𝑎𝑖𝑟  
𝑖

 (8) 

4.3. Evolutionary Optimization 

This section describes in detail the evolutionary optimization methodology and details of the algorithm 

parameters. Initially, a solution is presented that invokes the engineering simulation directly in the evolutionary 

optimization. The same optimization problem is then solved using the data flow architecture developed in 

section 3. The results from each case are compared and discussed in the following sub-sections.  

4.3.1. Simple Evolutionary Algorithm invoking Numerical Solutions 

A simple EA is utilized to optimize shapes of a heat-exchanger. Each fitness evaluation for the EA is computed 
using the heat-transfer simulation solver. It must be noted that each simulation run using the solver takes 

approximately 2-5 minutes to complete, depending on the shape of the profile, thus the overall wall-clock time 

for completion of the evolutionary optimization is several hours. Table (1) shows the EA parameters utilized for 

optimization. Using these EA parameters, shapes are evolved for a) linear, b) quadratic, and c) 4th degree fin 

designs.  

An elitism strategy has been used where the best individual in the population at the end of each generation is 

carried into the next generation without making any changes to it. Additionally, a tournament size of 10 has 

been used in the selection process to ensure that weak chromosomes do not progress to the next generation 

(Copiello, 2009). The number of generations is limited to 20 due to the time-consuming nature of fitness 

evaluations (Fabbri, 1998).Prior research by Fabbri (1998), Copiello (2009) and John(2017), studying 

evolutionary algorithms involving high-fidelity simulations haveinfluenced the choice of the EA parameters 
shown in Table(1).  
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Table (2) shows the total number of fitness evaluations during the evolution process invoking the engineering 

simulation for each of the three fin profile shapes. In this case, the EA was run only once due to the time-

consuming fitness. Table (3) shows the evolution of the shape of the fin profiles of the best individual in the 

population in each case with the number of generations. 

Evolutionary Algorithm Parameters 

Population size 100 

Generations 20 

Mutation Gaussian, probability=0.2 

Crossover Two-point, probability=0.6 

Selection Tournament, size=10 

Elitism Yes, size=1 

 

Table (1). Parameters of the evolutionary algorithm.  

 1
st
 Degree 2

nd
 Degree 4

th
 degree 

Number of Fitness 

Evaluations 
1479 1491 1493 

 

Table (2). Number of fitness evaluations invoking heat-transfer simulator.  

In the 1st, 2nd and 4th degree profile cases as the evolution proceeds, the base thickness (b) of the fin does not 

have a significant effect; itis seen to either decrease or remain constant, and is also closer to the minimum 

constraint in Equation (6). Since the vertical surfaces of the heat exchanger fin surrounded by air have not been 
considered in the fitness function in Equation (8), the profiles in Table (3) have low values for b. The same 

reason can be attributed to the high value of yav for the evolved fin profiles, since there is no implicit 

penalization in the EA for an individual with a high value of yav. 

The higher values of yavrelative to the evolved values of s, manifests as a higher value of y0. This in turn 

decreases the variability in the remaining values of yi since there is an upper limit constraint on all the values of 

yi, the effect of which is more pronounced in the evolution of the 4th degree profiles.  

However, with a small modification to the fitness function, high values of yavcan be mitigated which is 

addressed in section (4.3.2). 

 

Generation 1
st
 Degree Profile 2

nd
 Degree Profile 4

th
 Degree Profile 

5 

 
 

 

10 

   

15 

   

20 

   
Table (3). Best fin profiles at generations 5, 10, 15 and 20 during the evolution process.  
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As seen inTable (3) the curved surface of the fin profile evolvesto increase the surface area so that heat transfer 

to the fin tip can be enhanced. Also,in the case of the 4th degree profiles, the constraints incorporated tend to 

decrease the undulations on the curved surface of the fin. The evolution of the best and average fitness values 

over 20 generations for the linear, quadratic and 4th degree fin profiles are shown in Figure (5).  

Figure (5) demonstrates that the 1st degree fin profile optimization attains a higher fitness value in 20 

generations compared to the other shapes. This can be attributed to the smaller search space with a chromosome 
of length 4. In the evolution of the 1st degree profile, a high fitness individual is found early in the evolution 

process due to its smaller search space. Attaining a higher maximum fitness for the 2nd and 4th degree fin profiles 

is possible by changing the EA parameters like mutation, number of generations etc. 

 
(a) 1st degree 

 
(b) 2nd degree 

 
(c) 4th degree 

Figure (5). Fitness evolution – EA based on engineering simulations.  

 

Since the fitness function in Equation (8) does not account for the heat transfer from the vertical surfaces of the 

fin, modifying the fitness function can also improve the results of the EA. Each of these approaches requires 

additional time-consuming fitness evaluations.Thus, theapproach is not amenable to experimentation and 

restricts the quality of solutions obtained from the evolutionary optimization in higher dimensional search 

spaces. In the next section,the fitness function has been modified while utilizing the same parameters and 

constraints. The EA is run once again using a ROM and the Apache Spark based dataflow architecture and the 

results are discussed. 

 

4.3.2. EA with Apache SparkbasedReduced Order Model 

The EA is run invoking the Apache Spark based ROM using the same EA parameters from section 4.3.1. Data 

from 11 simulations have been used to bootstrap the ROM in each of the three cases. Once the ROM is 

constructed, at the end of every generation, the highest fitness chromosome is queued to execute additional 

simulations as discussed in section 3. The resulting data from the simulation is used to update the ROM, which 

in turn is utilized by the EA, thus completing the data-flowloop. The remainder of this section describes the 

results for each of the 1st, 2nd and 4th degree fin shapes.  
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(a) 1st degree 

 
(b) 2nd degree 

 
(c) 4th degree 

Figure (6). Fitness evolution - ROM based EA.  
 

In Figure (6) it is seen that higher fitness values are obtained in all three cases by modifying the fitness function 

to include the transverse surface of the fin exposed to air. In the case of the 1st degree fin profile, the best 

chromosome in the population (maximum fitness) increases for 10 generations, after which the EA is unable to 

find a significantly better solution. This can be attributed to a smaller search space in the case of the 1st degree 

profiles. This is also reflected in the similarity of the fin profiles for generations 15 and 20 in Table (4).  

Generation 1
st
 Degree Profile 2

nd
 Degree Profile 4

th
 Degree Profile 

5 

   

10 

   

15 

   

20 

   
Table (4). Evolution of fin profiles (generations 5, 10, 15,20)– ROM based.  
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In the case of the 2nd degree profiles, higher fitness 

values are obtained throughout the evolution 

process. Also, in Figure (6) the 2nd degree fin 

profiles have evolved to maximize the surface area 

of the fin exposed to air which includes the 

transverse surface of the fin base. Similarly, in the 
case of the 4th degree profiles, the fitness of the best 

chromosome increasesthroughout the evolution 

process. The best chromosomes evolve to maximize 

the surface area of the fin, as well as evolve values 

of y0 and y4that allow for the most heat dissipation 

along the transverse surfaces of the fin. In each of 

the three cases, a higher fitness chromosome is 

obtained by updating the ROM with the elite 

chromosomes from each generation. The following 

section discusses the visualizations of the unified 

distance matrix plots from the SOM as well as an 

optimization case in which the constraints on the 
geometry have been modified.  

 

4.3.3. Discussion 

In the approach taken in this article, elite 

chromosomes from the EA are utilized to update the 

ROM. To visualize changes to the input parameter 

space, a SOM unified distance matrix is used. Table 

(5) shows maps of the unified distance matrixat 

various stages of the evolution process. The unified 

distance matrix, which depicts distances between the 

input parameters, hasdarker regions implying 
greater distances at earlier generations and 

progressively moves towards being a more evenly 

spaced distribution.As the number of generations 

progresses the darker regions decrease. The EA adds 

additional points to the ROM input space, by 

triggering engineering simulations which enhance 

the ROM.  Additionally, it is also possible in the 

case of the 2nd degree profile, for the user to 

manually run simulations and update the ROM 

tobetter cover the input parameter space. The 

decrease in the space between data points in the 
input parameter space (i.e. darker regions), reflects 

better coverage of the input parameter space. This 

further underscores the role of the EA in enhancing 

the ROM. It can thus be concluded that visualizing 

using the SOM identifies regions of the input 

parameter space that need to be enhanced, in 

addition to the regions that are enhanced by the EA. 

Another example that underscores the usefulness of 

ROM based EAs is the ability to incorporate 

additional constraints on the fin geometry for 

improved manufacturability. Such design constraints 

are easier to incorporate quickly into a ROM based 
EA due to the lowcost of fitness evaluations. In the 

case of the 4th degree fin profile, the constraint on 

y4is relaxed so it can assume any value in the range 

[0,1]. In addition, y2is constrained to be within a 

20% range of y1. Figure (7) shows the evolution of 

fitness and geometries of the elite chromosomes at 

generations 5, 10, 15 and 20. It is seen that the fin 

profile at generation 20 evolves to one that is easier 

to manufacture despite having a lower fitness 

compared to the chromosome of the same 

generation in Table (4).  
Thus, by utilizing Apache Spark as a data-store and 

to perform ROM computations at scale, it is possible 

to establish a data-flow loop where an EA can 

utilize the results of a ROM as well as update it with 

results from elite population at each generation. 

  

Generation 1
st
 Degree Profile 2

nd
 Degree Profile 4

th
 Degree Profile 

5 

 

   

10 
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15 

 

   

20 

 

   
 

Table (5). Visualization of unified distance matrix over generations. 

 

Finally, the computational times are compared between the engineering simulation based optimization described 

in section 4.3.1 and the Spark - ROM based optimization described in section 4.3.2. 

 
Figure (7). Evolution of fin profiles (generations 5, 10, 15,20)– modified constraints.  

 

Fin profile Engineering Simulation EA Spark - ROM EA 

1st degree  16 hrs. 3 hrs. 

2nd degree  22 hrs.  3.2 hrs. 

4th degree  23 hrs.  3.5 hrs. 

 

Table (6). Run time comparison for 20 generations of the EA.  

 

Since the Spark based ROM optimization involves 

bootstrapping 11 simulations, the time taken to run 

each of the initialsimulations has been included in 

the computational time. Also, since the ROM based 

optimization involves computing an engineering 
simulation and the SVD at the end of each 

generation, the time taken for of each of these 

computations is also included in Table (6). In the 

case of the engineering simulation based EA, the run 

time is the total time taken for the evolutionary 

optimization to complete 20 generations since there 
is no data-flow involved. It must be noted that in 
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both cases, the EA can be parallelized to further 

reduce the wall-clock computational time. However, 

the parallelization case has not been considered in 

this article and will in considered in future research.  

It is seen from Table (6) that the run time of the EA 

with the ROM is considerably less than invoking 
engineering simulations directly. The time variation 

across the fin profile degrees is explained by the 

additional time to run simulations as the complexity 

of the fin geometry increases. It must be noted that 

approximately 30% of the time for the Spark-ROM 

based EA is spent in running the simulations 

required for bootstrapping the ROM. It is thus seen 

that utilization of the proposed data-flow 

architecture can reduce the time required to optimize 

the shapes of heat-exchanger fins.  

 

V. Conclusions and Future Work 
This article demonstratesthe use of Apache 

Spark and the machine learning library MLlib for 

evolutionary optimization of an industrial system 

componenti.e. the shape optimization of a heat-

exchanger fin. The article compares approaches 

invoking(a) high-fidelity engineering simulation 

models from an EA and (b)Spark-based ROMs from 

an EA.In the latter case, the best fitness 

chromosomes from each generation are used to 
augment the ROM, which results in higher 

performing optimal designs. SOMsare utilized to 

visualize the input design parameter space for the 

ROM and the visualizationsof the unified distance 

matrix are used to addsimulation data to assist the 

EA. Furthermore, constraints on the optimization 

problem are modified to adhere to manufacturability 

conditions and it is found that the ROM based EA 

can adapt and evolve a suitable solution. From 

theseresults, it can be concluded that through 

thisapproach the outcome of an EA utilizing ROMs 
can be directed and monitored in a transparent and 

efficient mannercompared to embedding a ROM 

into the EA. It also enables a more rapid exploration 

of the search space by utilizing data and machine 

learning driven reduced order models. Finally, the 

feedback of simulation data from the EAs elite 

solutionsenhances the ROM. This is a novel 

improvement from previous research where the 

results of the ROM were being employed by an 

optimization algorithm only to reduce computational 

time and not to re-compute the ROM on a periodic 

basis. Further researchneeds to be done toanalyze 
the performance by clustering Apache Spark nodes 

and analyzing performance on very large 

computational datasets. A detailed study and 

performance analysis can motivate further adoption 

of open-source big data tools by scientific 

computing researchers. Additionally, several open-

source tools developed to process big data in real-

time can be utilized to integrate engineering 

simulation models with real-time data from 

industrial systems equipment. Research needs to be 

undertaken in this area to evaluate methods and 

architecturesfor connected industrial systemsto help 

enable the adoption of big data technologies in 

enterprises that utilize high-fidelity engineering 

simulation models todesign products. 
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