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ABSTRACT: This paper reviews the latest research advances in vision-language large models and the field of 

object detection. In recent years, Vision-Language Models (VLMs) have made significant progress at the 

intersection of computer vision and natural language processing, demonstrating great potential in object 

detection tasks. Traditional object detection methods rely on large amounts of annotated data and predefined 

categories, whereas vision-language models enhance detection capabilities by leveraging multimodal 

contrastive learning and cross-modal alignment, especially excelling in open-vocabulary detection, zero-shot 

detection, and few-shot learning tasks. This paper first introduces the fundamental concepts and development 

history of vision-language large models and object detection, followed by a detailed discussion of their 

applications in object detection. 
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I. INTRODUCTION 

In recent years, with the rapid 

development of deep learning and artificial 

intelligence technologies, vision-language large 

models and object detection techniques have made 

significant progress, becoming research hotspots in 

the fields of computer vision and natural language 

processing. Vision-language large models, by 

integrating computer vision and natural language 

processing techniques, can understand and generate 

text descriptions related to images, and are widely 

applied in tasks such as image captioning, visual 

question answering, and cross-modal retrieval. As 

one of the core tasks in computer vision, object 

detection aims to identify and locate specific 

objects in images, providing rich visual information 

for vision-language large models. The combination 

of these two technologies not only drives the 

advancement of multimodal artificial intelligence 

but also offers strong technical support for real-

world applications. 

The integration of vision-language large 

models with object detection technology has 

opened up new possibilities for the advancement of 

multimodal artificial intelligence. On one hand, 

vision-language large models can leverage object 

detection techniques to better understand image 

content, thereby generating more accurate textual 

descriptions. For example, in image captioning 

tasks, object detection can help models identify key 

objects in an image and their relationships, leading 

to richer and more precise textual descriptions [1]. 

On the other hand, object detection can benefit 

from vision-language large models by utilizing 

textual information to enhance detection 

performance. For instance, in open-vocabulary 

object detection (OVOD) tasks, vision-language 

large models can expand detection categories 

through textual descriptions, enabling the detection 

of previously unseen classes [2]. 

Despite the significant progress in 

integrating vision-language large models with 

object detection technology, several challenges and 

issues remain. First, the construction of large-scale 

multimodal datasets is a critical issue. Although 

existing vision-language datasets (such as COCO 

and Visual Genome) are relatively large, they still 

have limitations in terms of diversity and coverage 

[3, 4]. Second, computational efficiency and real-

time performance are key concerns. Vision-

language large models and object detection 

techniques typically require substantial 

computational resources, making it difficult to meet 

real-time requirements in practical applications [5]. 
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Additionally, the generalization capability and 

robustness of these models remain significant 

challenges. Current vision-language large models 

and object detection techniques exhibit limitations 

when handling complex scenes and unseen 

categories, necessitating further improvements [6]. 

In conclusion, the integration of vision-

language large models with object detection 

technology has opened up new possibilities for the 

development of multimodal artificial intelligence, 

promoting the fusion and advancement of computer 

vision and natural language processing. This paper 

aims to review the mutually beneficial relationship 

between vision-language large models and object 

detection, exploring the latest research progress in 

their integration. 

II. VISION-LANGUAGE MODELS 

Early vision-language models were 

primarily based on  CNN and RNN, which encoded 

images and text into feature vectors separately and 

then performed simple feature fusion. For example, 

the "Show and Tell" model proposed by Kiros et al. 

used a CNN to extract image features and an RNN 

to generate corresponding text descriptions [7]. 

Another early representative work is the "Neural 

Image Captioning" model proposed by Vinyals et 

al., which also adopted a CNN-RNN architecture, 

feeding image features into an RNN to generate 

text descriptions [8]. 

With the introduction of the Transformer 

architecture, research on vision-language models 

entered a new stage. The Transformer, through its 

self-attention mechanism, enabled parallel 

processing of sequential data, significantly 

enhancing the model's expressive power and 

training efficiency. For example, the Transformer 

model proposed by Vaswani et al. achieved 

groundbreaking progress in machine translation 

tasks [9]. Vision-language models based on the 

Transformer, such as CLIP[10] (in Figure 1) and 

OFA[11], learned rich visual and linguistic 

representations by pretraining on large-scale 

image-text pair datasets, significantly improving 

the performance of multimodal tasks.The 

ALIGN[12] model achieves zero-shot learning for 

unseen categories and tasks by pretraining on a 

large-scale image-text pair dataset . 

 
Fig.1  CLIP model architecture 

Self-supervised learning and contrastive 

learning are another important direction in the 

recent research of vision-language large models. 

Self-supervised learning designs pretraining tasks 

to utilize unlabeled data for model training, thereby 

reducing the reliance on labeled data. For example, 

the SimCLR model uses contrastive learning to 

achieve self-supervised learning of image features, 

significantly improving performance in image 

classification and object detection tasks [13].In 

vision-language large models, contrastive learning 

is widely used for multimodal feature alignment 

and representation learning. For instance, the 

ALBEF model uses contrastive learning to achieve 

fine-grained alignment of image and text features, 

resulting in better performance in visual question 

answering and image captioning tasks [14]. This 

type of research shows that contrastive learning is 

an effective strategy for improving the performance 

of vision-language large models. 

Despite the significant performance 

improvements in vision-language large models, 

their computational complexity and resource 

requirements have also increased significantly, 

making it difficult to meet real-time requirements 

in practical applications. As a result, model 

compression and knowledge distillation have 

become important directions in vision-language 

large model research. For example, the DistilBERT 

model uses knowledge distillation to compress 

large-scale pre-trained language models into 

smaller models, significantly reducing 

computational complexity while maintaining 

performance [15]. 

In vision-language large models, 

knowledge distillation is widely applied for model 

compression and acceleration. For instance, the 

TinyVL model uses knowledge distillation to 

compress large-scale vision-language models into 

smaller models, enabling efficient deployment on 

mobile devices and embedded systems [16]. This 

type of research demonstrates that model 

compression and knowledge distillation are 

important techniques for enhancing the practical 
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application value of vision-language large models. 

III. OBJECT DETECTION  

With the rise of deep learning technology, 

object detection has further developed into two 

main categories: single-stage detectors and two-

stage detectors. Single-stage detectors achieve 

faster detection speeds by directly performing 

dense sampling and classification on the image. For 

example, the YOLO (You Only Look Once) 

method proposed by Redmon et al. treats object 

detection as a regression problem, completing the 

task with a single forward pass, which significantly 

improves detection speed [17]. The YOLO series 

methods (such as YOLOv3 and YOLOv4) further 

enhance detection accuracy and speed by 

introducing multi-scale prediction and Feature 

Pyramid Networks (FPN) [18, 19].Another 

representative single-stage detector is the SSD 

(Single Shot MultiBox Detector) method proposed 

by Liu et al., which achieves effective detection of 

objects at different scales by making predictions 

across multiple feature maps [20]. The SSD 

method combines multi-scale features with a 

default box mechanism, significantly improving 

detection accuracy while maintaining high 

detection speed. 

Two-stage detectors achieve higher 

detection accuracy by first generating region 

proposals and then performing fine classification 

and regression. The R-CNN (Region-based 

Convolutional Neural Networks) series methods, 

proposed by Girshick et al., are pioneering works 

in deep learning-based object detection [21]. R-

CNN generates candidate regions using Selective 

Search and extracts region features using CNNs, 

followed by classification and bounding box 

regression with an SVM classifier. To improve 

detection efficiency, Girshick et al. proposed the 

Fast R-CNN method, which introduced the RoI 

pooling layer to enable shared computation of 

candidate region features, significantly reducing 

computational cost [22]. Later, Ren et al. proposed 

the Faster R-CNN method, which introduced the 

Region Proposal Network (RPN) to further unify 

candidate region generation and object detection 

into an end-to-end framework, significantly 

improving both detection speed and accuracy [23]. 

 

IV. OPEN VOCABULARY OBJECT DETECTION 

Open Vocabulary Object Detection 

(OVOD) is an important research direction in the 

field of object detection, aiming to address the 

dependency of traditional object detection methods 

on fixed category labeled data. Traditional object 

detection methods can typically only detect 

categories that appear in the training set, while 

open vocabulary object detection requires the 

model to detect unseen categories. In recent years, 

with the development of large-scale vision-

language models such as CLIP, significant progress 

has been made in open vocabulary object detection. 

The CLIP model, by pretraining on a large-scale 

image-text paired dataset, has learned powerful 

cross-modal alignment capabilities, allowing it to 

map images and texts to the same semantic space, 

thereby enabling open vocabulary object detection. 

Open Vocabulary Object Detection 

(OVOD) leverages the concept of open vocabulary 

learning, using image-text knowledge to train on 

known category data, thereby enabling detection of 

unseen categories. This approach acquires rich 

knowledge by utilizing a large amount of additional 

data to cover more object detection categories, and 

transfers this knowledge to a general object 

detection framework for further training. This 

allows a closed-set object detector to be extended 

into an open-vocabulary object detector, enabling it 

to recognize and detect new categories that were 

not seen during training. 

4.1 REGION-TEXT PRETRAINING 

Region-Text Pretraining is an important 

approach in Open-Vocabulary Object Detection 

(OVOD), aiming to align image regions with 

textual descriptions by pretraining on large-scale 

region-text paired data, thereby enabling the 

detection of unseen categories. The core idea is to 

leverage vision-language models (such as CLIP) to 

map image region features and text features into 

the same semantic space. Through contrastive 

learning or other alignment mechanisms, the model 

can detect categories not present in the training 

data based on textual descriptions. Specifically, 

Region-Text Pretraining typically involves the 

following steps: first, extracting image region 

features using object detection frameworks (such as 

Faster R-CNN or DETR); second, extracting text 

features using pretrained language models (such as 

BERT or CLIP text encoders); then, aligning 



 

 

International Journal of Modern Research in Engineering and Technology (IJMRET) 

www.ijmret.org Volume 10 Issue 03 ǁ March 2025. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w w w . i j m r e t . o r g       I S S N :  2 4 5 6 - 5 6 2 8  

 

 

 

Page 12 

region features and text features through 

contrastive learning or cross-modal attention 

mechanisms; finally, during inference, detecting 

unseen categories by computing the similarity 

between image region features and text features. 

This approach not only significantly enhances the 

model's generalization ability for open-vocabulary 

scenarios but also avoids the high cost of retraining 

the model. 

OVR-CNN[24] utilizes large-scale region-

text paired data (such as the Visual Genome 

dataset) for pretraining, mapping image region 

features and textual descriptions into the same 

semantic space. Through this approach, the model 

learns the semantic relationships between image 

regions and text. This method enables the extension 

of detectable categories without the need to retrain 

the model.To better capture the correspondence 

between regions and text, MEDet[25] jointly trains 

an object detector using mini-batches of data from 

both detection datasets and image caption datasets. 

During training, the caption text is parsed to extract 

word-level text, which may contain information 

about new categories.RegionCLIP[26] uses 

pseudo-label text alignment to obtain pseudo-

region-text pairs, which are then input into the 

model to pretrain the image encoder to learn region 

information. The visual encoder is fine-tuned using 

a manually annotated dataset to adapt to different 

detection tasks. 

4.2 KNOWLEDGE DISTILLATION 

In open vocabulary object detection tasks, 

knowledge distillation can help enhance the 

capabilities of the student model by learning from 

the knowledge of a complex teacher model, 

especially when computational resources are 

limited. Specifically, the teacher model is typically 

a large-scale vision-language model that has been 

pre-trained on vast amounts of image and text data, 

enabling it to effectively recognize various object 

categories and understand cross-modal information. 

Through knowledge distillation, the student model 

can learn how to handle the relationship between 

images and text from the teacher model, thereby 

improving its performance in open vocabulary 

object detection tasks. 

The ViLD[27] model uses knowledge 

distillation to transfer image and text knowledge 

from a pre-trained open-vocabulary image 

classification model to a two-stage detector, 

addressing the problem of limited training data in 

open-vocabulary object detection (OVD) tasks. The 

ViLD model employs a vision-language model 

(VLM) image encoder to compute image 

embeddings for cropped regions and a text encoder 

to obtain text embeddings for categories. These text 

embeddings are then used as inputs to the region 

classifier. This approach allows ViLD to better 

handle the challenges of category expansion and 

cross-modal learning in open-vocabulary object 

detection tasks. 

4.3 TRANSFER LEARNING 

Transfer learning typically involves fine-

tuning a large pre-trained model or extracting 

visual features for downstream tasks. The F-

VLM[28] model adopts a transfer learning-based 

approach. The main feature of this method is the 

direct use of a pre-trained vision-language model 

(VLM) image encoder to train the detection head, 

which is matched with the text features generated 

by the CLIP text encoder. A Region Proposal 

Network (RPN) is used to generate candidate 

regions for feature extraction. The extracted region 

embeddings are then compared with the text 

embeddings of the CLIP text encoder. 

 

4.4 PROMPT LEARNING 

Prompt learning is a method that guides th

e model's learning using text prompts. In the field o

f image recognition, prompts can be image descript

ions, labels, or classification information. By desig

ning these prompts effectively, they can adjust and 

optimize the base model, enabling it to adapt to var

ious downstream tasks. 

To obtain the text embeddings of class na

mes, prompts are input into the pretrained VLM tex

t encoder to generate them, and these embeddings a

re used to supervise the training of the region classi

fier for object detection. The PromptDet[29] model

 incorporates a series of learnable vectors into the t

ext input. These vectors do not correspond to any a

ctual words, but instead serve as virtual tokens to h

elp better align the text embedding space with the v

isual representations for object detection. 

 

V. CONCLUSION 

The integration of vision-language models 

with object detection has brought revolutionary 

advancements to the field of computer vision, 

especially in the OVOD task. By combining the 
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powerful semantic understanding capabilities of 

vision-language models (such as CLIP and 

ALIGN) with object detection frameworks, 

researchers have successfully enabled the detection 

of unseen categories, significantly enhancing the 

model's generalization ability. Core methods 

include region-text alignment, knowledge 

distillation, prompt learning, and pseudo-label 

generation, among others. These techniques, 

through multimodal fusion and semantic alignment, 

enable the model to flexibly extend detection 

categories using text descriptions. Representative 

works such as RegionCLIP, ViLD, and FVLM 

have driven improvements in open-vocabulary 

detection performance. In the future, as multimodal 

pretraining technologies continue to develop, the 

integration of vision-language models with object 

detection will become even more seamless, 

potentially achieving greater breakthroughs in zero-

shot learning, few-shot learning, and complex 

scene understanding. 
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