

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 38

C/C++-based NX Secondary Development Technology and

Applications

LianJin DENG

(Jiangnan Mechanical and Electrical Design Research Institute, Guiyang, Guizhou 550009, China)

Abstract: NX is a software further updated and upgraded on UG, NX secondary development technology refers

to the existing NX software functions on the basis of writing programs to add, expand the functions that the user

wants to achieve, so that the NX software is more in line with the needs of the designer. there are various ways

of NX secondary development, such as GRIP, KF, SNAP, NXOpen, etc., and the development of these ways of

The application programming interface (API) is licensed by NX software to access the shared C/C++ API and

the NX kernel. Among these development methods, NXOpen is the most commonly used secondary

development tool, which provides a collection of APIs that enable developers to create customized applications

for NX using programming languages such as C/C++, Visual Basic, C#, Java, Python, and so on, in an open

architecture. Through NXOpen, users can edit the program to develop functions, create customized menus, build

a complete user interface, and ultimately realize the development of human-computer interaction interface and

related functions.

Keywords: NX secondary development, NXOpen, C/C++, API, Technical application

I. Introduction to NXOpen C/C++

NXOpen C/C++ is a secondary development

tool that combines the foundation of the C++

language with the API functions contained in the C

language[1], and it contains the most complete API

functions, the most perfect performance, and the

most varied, as shown in Table 1, NXOpen C/C++

supports the new version of the UI interface, which is

continuously updated by the official, and the

development tool adopts Visual Studio, which has

greater superiority than other development methods.

Compared with other development methods,

NXOpen C/C++ contains Open C API interface and

Open C++ program interface, developers can check

the help document, call the corresponding API

function for program writing and system

development[2].

Table 1 Comparison of NX secondary development methods

Development

Method
Generality Completeness UI Interface

Official Update

Frequency

Development

Tool

GRIP Good Incomplete Old Not updated Text compiler

KF Good Incomplete New Not updated Text compiler

SNAP Poor Incomplete New Not updated Visual Studio

NXOpen C Good Incomplete Old Not updated Visual Studio

NXOpen C++ Poor Complete New continuously updated Visual Studio

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 39

Development

Method
Generality Completeness UI Interface

Official Update

Frequency

Development

Tool

NXOpen .NET Poor Complete New continuously updated Visual Studio

NXOpen Java Poor Complete New continuously updated Eclipse

NXOpen Python Poor Complete New continuously updated Eclipse

1.1 Introduction to NXOpen C

The main function of NXOpen C's Application

Programming Interface is to connect the NX software

with the external environment. The API consists of:

(1) a complete and large set of functions and

subroutines that can be called by the developer,

covering almost all the functionality of the NX

software; (2) a set of commands that link and run the

designer's program; (3) an interactive interface that

enables the program to run in the NX software.

interactive interface that enables programs to run in

the NX software.

Programs of the NX Open C API are able to run

in two different environments, internal and external;

external programs are stand-alone programs that are

able to run independently of the operating system

outside of NX, while internal programs can only run

within the NX software. Most of the programs of the

NX Open C API can run both inside the NX software

and outside of the NX software on the operating

system, which mainly depends on how the program

is linked. Programs that run internally have smaller

executable files and are faster to link compared to

programs that run externally. Once an internal

program is loaded into memory, it remains

continuously in the NX session and can be executed

without being reloaded when the program is called

again, provided that the program has not been

uninstalled.

1.2 Introduction to NXOpen C++

NXOpen C++ is an object-oriented

programming interface for NX software that provides

access to NX objects and functions through a

hierarchy of C++ classes. You can use the methods of

this C++ class hierarchy to create, read, and modify

NX objects and to control NX programs.NXOpen

C++ has the following features.

(1) NXOpen C++ is based on C++ programs

using standard C++ syntax, which makes the

program code more concise and readable.

(2) NXOpen's C++ objects are referenced by

pointers to them, rather than using a label, which

makes its programming style more natural and

expressive.

(3) NXOpen C++ programs report errors

through the C++ exception mechanism, which allows

error handling to be located in multiple places and

avoids explicitly checking for error code returned by

a single function call.

(4) NXOpen C++ is strongly typed, which

means that any attempt to call a function on an

inappropriate NX object will be caught by the C++

compiler and will not result in a runtime error.

(5) NXOpen C++ takes advantage of the

encapsulation of C++ programs, making it easier to

identify the set of functions associated with a

particular type of NX object.

(6) NXOpen C++ provides a framework for

defining new object classes using standard C++

inheritance, allowing your derived classes to overlay

virtual methods, and allowing users to define NX

operations such as updating the meaning of a new

object.

(7) NXOpen C++ can be used in conjunction

with traditional Open C function calls, allowing

objects created in Open C++ to be accessed in Open

C and vice versa.

(8) NXOpen C++ allows the creation of context

management of NX objects by specifying a

proprietary section in each create method.

(9) NXOpen's C++ program unifies the

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 40

evaluation and querying of curves and edges,

allowing you to write code without having to write

special branches for wireframe curves and solid

edges.

(10) The NXOpen C++ program makes it easy

to edit objects without having to query whether an

object is a prototype or an occurrence.

II. NXOpen secondary development

environment configuration and platform

construction

2.1 Environment Configuration

Before carrying out secondary development, it

is necessary to configure the environment of NX

software and computer operating system, NX

software and Visual Studio software in order to be

able to realize the relevant functions of NX software

through the relevant program code. This paper is

based on the NX10.0 platform, and computer system

configuration, add environment variables in two

ways. The first in the NX10.0 directory to find

UGII/menus/custom_dirs.dat file, and then

“UGII_USER_DIR = (development menu directory

path)” added to the end of the text; the second set the

computer's system variables, the specific steps as

follows “Advanced System Settings →

Environmental Variables → New Variables”, as

shown in Fig.1, create UGII_BASE_DIR,

UGII_ROOT_DIR and UGII_VENDOR_DIR, which

are the system variables for the path of the base path,

the path of the root directory and the path of the

development menu directory respectively. The

following are the system variables for the base path,

root directory path, and development menu directory

path.

Fig.1 System Environment Configuration

Different versions of NX software need to

correspond to different versions of Visual Studio

development environment, this article is based on the

NX10.0 corresponds to Visual Studio 2012 software.

When configuring the development environment of

NX and Visual Studio, copy all three folders of VB,

VC and VC# in the installation directory

NX10.0/UGOPEN/vs_files of NX10.0 software to

the installation directory of Visual Studio 2012

software, and restart Visual Studio 2012 software,

then when creating a new project, there will be more

VB, VC and VC# folders in the list. Restart Visual

Studio 2012, when you create a new project, there

will be two more options, NX10 NXOpen Wizard

and NX10 NXOpen C++ Wizard in the list, select

one of them to create a new project, open the

properties of the project, and follow the guideline in

Fig.2, select C/C++ → General → Additional

Containing Directory and set it to the base directory's

$(UGII_BASE_DIR)\\ugopen, and select Linker →

General → Output Files set to

$(UGII_VENDOR_DIR)\application in the

development menu directory. in addition to this, the

contents of C/C++ → Preprocessor → Preprocessor

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 41

Definitions are all replaced with the items

_CRT_SECURE_NO_WARNINGS,

_SECURE_SCL=0, and USRDLL, and linker →

Input → Additional Dependencies are replaced by

libugopenint.lib, libufun.lib, libnxopencpp.lib and

libnxopenuicpp.lib. Finish the above operation, you

can complete the NXOpen secondary development of

the development environment configuration.

Fig.2 Development Environment Configuration (in Chinese software interface)

2.2 Platform Construction

In order to facilitate the secondary development

work, we need to create three sub-folders in the path

of the NX secondary development directory, namely,

startup, application, and code, which are responsible

for storing various necessary resources of the

system[3]. The startup sub-files include menu files

(.men), toolbars (.rtb), which are mainly used to

generate the system's pull-down menus and toolbars.

application folder is mainly used to store bitmap

(.bmp), dialog box files (.dlx), dynamic link library

files (.dll), etc. Bitmap files refer to the icons

displayed in NX's operation dialog boxes, Bitmap

files refer to the icons and diagrams displayed in the

NX operation dialog box, dialog box files refer to the

files generated by the developers for designing the UI

interface, and dynamic link library files refer to the

files generated by debugging and running the

program code to directly realize the functions of the

code. code folder is a folder for storing the secondary

development source code solutions (.sln), C++

program code (.cpp), etc. The files in the

development path each performs the relevant

functions. The files in the development path each

perform the relevant functions and work together to

form the human-computer interface of NX and

complete the development of product examples, as

shown in Fig.3.

(1) MenuScript script code can be written

directly through the text document, and its main code

is as follows:

① First-level main menu

VERSION 120 //Version number

EDIT UG_GATEWAY_MAIN_MENUBAR

 //Edit Main Menu

AFTER UG_HELP //Main menu storage location

CASCADE_BUTTON

CORE_PULLING_MECHANISM

 //Menu button name

LABEL “System Name” //Chinese label

END_OF_AFTER //End main menu editing

MENU CORE_PULLING_MECHANISM

... //Secondary menu editing area

END_OF_MENU //End secondary menu

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 42

Fig.3 Development Program Workflow

② Secondary Menu

BUTTON CASTING_GEOMETRIC_ANALYSIS

 //Secondary Menu Name

LABEL “Secondary Menu Name” //Chinese label

BITMAP cae_geometry_revision //Bitmap Name

ACTIONS Casting_Information_Analysis //DLL file

(2) Toolbar file program code can also be

written through the text file, the main code is as

follows:

TITLE “System Name” //Title

VERSION 170 //Version number

BEGIN_GROUP “Subsystem Name”

 //Module start

 BUTTON LOGIN_SYSTEM

 //Introduction of MenuScript

 RIBBON_STYLE LARGE_IMAGE_AND_TEXT

 //Bitmap and text font size

 GROUP NXOpen_dlj_part.gly //Gallery library files

 COLLAPSED TRUE //Folding toolbars

END_GROUP //End of module

The toolbar layout of the human-computer

interaction design system for inclined guide pillar

side core pulling mechanism developed in this paper

is shown in Fig.4, which contains two modules,

namely, intelligent feature recognition system and

core pulling mechanism part design. The intelligent

feature recognition system contains toolbars for

molded part analysis, typical feature library, solid

feature recognition, molded feature recognition,

surface feature recognition, etc. The core pulling

mechanism component design module contains

design parameter calculation, tilting pin design, slide

mechanism design, attribute filling and other

auxiliary design toolbars.

Fig.4 Layout of the toolbar of the human-computer interaction design system for inclined guide pillar side

core extraction mechanism

III. UI Design

User Interface (UI)[4-5] is the interface designed

for user's human-computer interaction, and UI

interface design can improve the operation

experience and interface appearance. In the previous

UI interface design, people often use manual

programming to design, but this is not friendly to

designers and wastes a lot of time. However,

adopting Block UI Styler to design UI interfaces

allows users and developers to interactively build

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 43

dialog boxes consistent with the NX style, which

reduces designers' development time, automatically

generates code, and maintains compatibility with

MenuScript.

In NX software, you can access the new version

of UI interface design by clicking File → Launch →

All Application Modules → Block UI Style Editor in

the toolbar. The block directory of the new version of

UI interface design mainly consists of five categories:

Basic, Numeric, Layout, Selection and Special. After

selecting the corresponding UI Block type, you can

modify the corresponding attributes in the System

Dialog Box, and the design result will be instantly

displayed in the dialog box of the design. The

window of the system dialog box includes two tabs,

namely “Dialog Box” and “Code Generation”. The

function of “Dialog Box” is to set the layout and

properties of the UI interface. The role of “Dialog” is

to set the layout and properties of the UI interface,

you can set its name, bitmap, display style and so on,

and “Code Generation” is to configure the way of

generating the code of the dialog box, and the code

generated by the UI interface of this system is C++.

Fig.5 shows the complete UI interface as designed.

In the dialog box design of UI interface,

designers only need to click the UI Block type in the

block catalog to edit the properties of the type and

add it to the design interface. However, different UI

block types correspond to different Classes and

different functional implementations. Commonly

used UI block types are shown in Table 2, and

developers can find the corresponding APIs in the

help file according to the classes in the table, and use

them to realize getting, setting, and referencing the

values of the type.

Fig.5 Schematic diagram of UI interface design

Table 2 Common UI Block Information

UI Block Type Class Description

Label/Bitmap BlockStyler::Label Display text or bitmap

String BlockStyler::StringBlock Single line text input box

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 44

UI Block Type Class Description

Enumeration BlockStyler::Enumeration
Enumeration box to perform

selection operations

Action Button BlockStyler::Button Button, click to perform an action

List Box BlockStyler::ListBox List box, lists all options

Integer BlockStyler::IntegerBlock Integer input box

Double BlockStyler::DoubleBlock
Double precision number input

box

Expression BlockStyler::ExpressionBlock Expression input box

Select Object BlockStyler::SelectObject Selection of objects

Curve Collector BlockStyler::CurveCollector Curve Collector

Face Collector BlockStyler::FaceCollector Face Collector

Body Collector BlockStyler::BodyCollector Body Collector

Select Feature BlockStyler::SelectFeature Select Features

Specify Point BlockStyler::SpecifyPoint Specify Points

Specify Vector BlockStyler::SpecifyVector Specify Vector

Specify Plane BlockStyler::SpecifyPlane Specify plane

Tree List BlockStyler::Tree Tree list

For the query and use of the classes of UI design,

developers can enter the help document of NX

secondary development, find the NXOpen C++

Reference Guide, enter the Classes, find the class of

BlockStyler, and then query the use of the relevant

classes. The new UI design greatly reduces the

workload of the developers and allows them to

design a beautiful and very humanized

human-computer interface.

IV. Specific Applications of NXOpen C/C++ in

the Development Process

4.1 Specific Applications of NXOpen C

The help documentation of NX secondary

development provides nearly 92 API categories,

which contain more than 5000 APIs, including API

files, functions, structures, enumerations and so on.

The commonly used NXOpen C API types and their

functions are shown in Table 3.The NXOpen C APIs

are named with certain rules, which are related to the

module it is located in and the functions it

implements, and its naming rule is

UF_<area>_<name>.UF is the abbreviation of User

Function, which refers to the user function. <area>

usually refers to the application module or function

module, such as MODL, ASSEM, PART and so on.

<name> is usually a description of the function

realized by this API, which is usually composed of

verbs, nouns, etc., such as ask (query), get (get),

create (create), delete (delete), etc. For example,

UF_MODL_ask_body_faces() refers to the MODL

module, query all the faces on the body, input the

TAG of the body can be output to the body of all the

faces of the chain table, the function body is as

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 45

follows:

int UF_MODL_ask_body_faces //API function body

(

tag_t body; //TAG of the body

uf_list_p_t * face_list;//Chained lists of TAGs on the face

);

NX contains many objects, such as Feature,

Body, Face, Edge, Point, etc. Common objects are

defined in the header file in the path directory

$(UGII_BASE_DIR)\ugopen\uf_object_types.h.

NXOpen C objects are defined in two parts, Type and

Subtype. are defined as Type and Subtype, where

Subtype describes the object in more detail. The API

function for object type acquisition is:

UF_OBJ_ask_type_and_subtype. For example, the

object type of Face can be categorized into

CYLINDRICAL_FACE (cylindrical face),

CONICAL_FACE (conical face),

SPHERICAL_FACE (spherical face),

PLANAR_FACE (planar face) and so on.

Table 3 NXOpen C API Types and Their Functions

Types Functions

UF_ASSEM Function modules related to assembly, such as UF_ASSEM_activate_sequence()

UF_ATTR Function modules related to attributes, e.g. UF_ATTR_count_user_attribute_titles()

UF_CAM CAM-related function modules, such as UF_CAM_ask_auto_blank()

UF_CFI Function modules related to file operations, e.g. UF_CFI_ask_file_exist()

UF_CSYS Function modules related to coordinate system operations, e.g. UF_CSYS_ask_csys_info()

UF_CURVE Function modules related to curve operations, e.g. UF_CURVE_add_faces_ocf_data()

UF_DISP Function modules related to display, such as UF_DISP_activate_grid()

UF_DRAW Function modules related to mapping, e.g. UF_DRAW_add_auxiliary_view()

UF_FACET Function modules related to small planar body operations, e.g. UF_FACET_cycle_facets()

UF_KF Function modules related to Knowledge Fusion, such as UF_KF_ask_list()

UF_LAYER Function modules related to layer operations, e.g. UF_LAYER_ask_category_info()

UF_MODL Function modules related to model operations, such as UF_MODL_active_part()

UF_MTX Functional modules related to matrix operations, e.g. UF_MTX2_copy()

UF_OBJ Function modules related to object operations, such as UF_OBJ_ask_cre_mod_versions()

UF_PART Function modules related to part operations, such as UF_PART_ask_customer_area ()

UF_SKET Function modules related to sketch operations, e.g. UF_SKET_add_conics()

UF_UI Function modules related to user interface operations, e.g. UF_UI_set_status ()

UF_VEC Functions related to vector operations, e.g. UF_VEC3_distance_to_plane ()

In addition to the C/C++ standard data types,

NXOpen C also contains a large number of data

types, such as structures, joint structures,

enumerations, pointers, etc., whose suffixes are

indicated by _s, _u_t, _e, _p_t, etc. The common

structure types are as follows:

1) _t; //Data type (Data type)

2) _p_t; // Data type Pointer to that type

3) _s; //Structure type

4) _e; // Enumeration type

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 46

5) _u_t; //Union type

6) _u_p_t; // Pointer to a union type

7) _f_t; //Pointer to a function

Developers master the NXOpen C help file and

the use of related API functions, you can develop the

functions you want to achieve in the NX secondary

development platform, but if you want to develop a

beautiful human-computer interface in conjunction

with the UI interface and the realization of its

functions, you need to developers on the basis of the

NXOpen C API, to be able to skillfully master and

use the NXOpen C ++ related programs and code. In

the following, the practical application of NXOpen

C++ in the secondary development of NX will be

carried out in conjunction with the UI interface.

4.2 Specific Applications of NXOpen C++

After the UI design is completed, the completed

UI design will be used for code generation to

generate three files: *.dlx, *.hpp, and *.cpp. The

*.dlx file is the layout file of the UI interface, while

the developer can modify and add the program code

of the *.hpp and *.cpp files to realize the functions of

the UI interface.Block UI Styler dialog box code has

its own unique template framework, on these existing

frameworks, using the NXOpen C API and C++ help

files can be achieved by editing and writing functions.

The code required for the different UI Block types of

the Block UI Styler dialog box varies, and this

section also describes the specific use of typical code

for several UI Block types.

(1) NXOpen C++ template code

NXOpen C++ code consists of *.hpp and *.cpp

files. The code file generated by any Block UI Styler

dialog box has the same template code, and the

developer only needs to write code on top of the

template to realize the corresponding functions.

function, as well as the display function Show(),

initialize function initialize_cb(), dialog box display

function dialogShown_cb(), apply function

apply_cb(), dialog box update function update_cb(),

confirm function ok_cb(), dialog box properties

function GetBlockProperties (), etc., the need to use

these functions, just write the code inside its function,

and then finally callback the corresponding function,

you can achieve the corresponding function.

(2) Object Selection Filtering

In the dialog box of the UI interface, in the use

of the specified object Select Object function, if you

do not specify the selected object (body, surface,

edge, etc.), you need to filter the selected object, so

that the user in the selection of any object, the

function can be applied to the selection of objects

filtering the key code is as follows:

Selection :: SelectionAction action = Selection ::

SelectionActionClearAndEnableSpecific;

 //Activate object selection

std::vector<Selection::MaskTriple> maskArray(1);

 //Only one type of object can be selected at a time

maskArray[0] = Selection::MaskTriple(UF_solid_type,

UF_solid_body_subtype, 0);

 //Define the matrix of Bodies

selection0 -> GetProperties () -> GetselectionFilter

("SelectionFilter", action, maskArray) ;

 //Getting the properties of the selected objects

After the object selection is complete, you can

use the following code to get the TAG value of the

selected object:

PropertyList *blockSelectPros = blockSelect ->

GetProperties();

std::vector <NXOpen::TaggedObject*> theblockSelect =

blockSelectPros ->

GetTaggedObjectVector("SelectedObjects");

delete blockSelectPros;

blockSelectPros = NULL;

(3) Enumeration value acquisition

The enumeration type is the Block UI type

commonly used in the UI interface of NX secondary

development, in the secondary development code

writing, the acquisition of the value of the

enumeration type and display the contents of the

dialog box according to the different enumeration

value is the focus of the use of enumeration type. To

get the position of the enumeration type and

determine whether to hide or show, the code should

be written not only in the dialogShow_cb() function,

but also in the update_cb() function. The code for the

enumeration type is as follows:

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 02 ǁ February 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8

Page 47

NXString NX_name = enum0 -> ValueAsString();

string libName = NX_name.GetLocaleText();

PropertyList *enum0Pros = enum0 -> GetProperties();

double theenum0 = enum0Pros -> GetEnum(“Value”);

delete enum0Pros;

enum0Pros = NULL;

(4) Print Window

The key information in the development process

sometimes needs to be displayed through the print

window, short information can be printed through the

uc1601() function, print more information can be

printed through the UF_UI_write_listing_window()

function to print the key code is as follows:

char msg[256];

sprintf(msg, “%d”, TAG);

UF_UI_open_listing_window();

UF_UI_write_listing_window(msg);

(5) Access to the relative path of the file

In the process of system development,

sometimes it is necessary to output and save various

information generated during the design process in

the form of other text files, Excel files, etc.

Sometimes it is also necessary to import the

corresponding file information, and at this time it is

necessary to access the relative path of the file.

Access to the relative path of the file is a common

function in the development of the system, the

realization of the process of the key code is as

follows:

char *translation;

UF_translate_variable(“UGII_BASE_DIR”, &translation);

string BaseDIR1 = translation;

string BaseDIR2 = “\\DLJTOOLS\\Prt\\dlj.prt”;

string BaseDIR3 = BaseDIR1 + BaseDIR2;

This section lists some of the key code of the

commonly used Block UI types, in addition to this,

there are many specific applications of NXOpen C++,

as well as the implementation of some key features,

which will be described in detail in the subsequent

paper of this study.

V. conclusion

This paper elaborates on the features of

NXOpen C/C++ language, systematically introduces

the types and features of NXOpen C API and

NXOpen C++, as well as the specific applications in

the process of NX secondary development, and also

describes in detail the detailed steps and process of

NX secondary development environment

configuration and platform construction, the

workflow of the NXOpen program in the NX

software and the UI interface design and its

commonly used Block UI type's role and realized

functions, to create a theoretical foundation and use

of the environment for NXOpen secondary

development, so that beginners of secondary

development can quickly integrate into the

atmosphere and environment of NXOpen C/C++

language.

Reference

[1] Tang Kanglin. Siemens NX secondary

development [M]. Beijing: Electronic Industry

Press, 2021:1-4.

[2] Andrei Lobov, Tuan Anh Tran. Object-oriented

approach to product design using extended NX

Open API[J]. Procedia Manufacturing, 2020,

51:1014-1020.

[3] DENG L J. NXOpen-based human-computer

interaction design system development for

lateral core extraction mechanism of inclined

guide pillar[J]. Journal of Advanced Mechanical

Design, Systems, and Manufacturing, 2024,

18(5): JAMDSM0056-JAMDSM0056.

[4] Meng Guangjun, Zhang Ming, Wang Anmin.

User interface development technology of UG

software[J]. Machinery, 2004(5):39-42.

[5] Zuosheng Zhang, Zhenguo Zhu, Chuansheng

Chen. Discussion on Ribbon interface design

based on UG/Open secondary development

platform[J]. Mold Industry, 2021,47(12):4-8.

