International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

Enhancing the security of the MQTT protocol in the
Internet of Things using the Syracuse conjecture

OUATTARA YACOUBA!, COMPAORE WENDPUIRE OUSMANE?,

OUEDRAOGO PATINDE VICTOR MARIE JACQUES?, TRAORE YAYA*

! (Science and Technology Department, Institut Burkinabe des Arts et des Métiers (IBAM)/ Université Joseph Ki-
Zerbo, Burkina Faso)
?(Institut Universitaire de Technologie (IUT)/ Université Nazi BONI, Burkina Faso)
S(Science and Technology Department, Institut Burkinabe des Arts et des Métiers (IBAM)/ Université Joseph Ki-
Zerbo, Burkina Faso)
*(Science and Technology Department, Institut Burkinabé des Arts et des Métiers (IBAM)/ Université Joseph Ki-
Zerbo, Burkina Faso)

ABSTRACT: This article proposes a scientific contribution to strengthen the security of the MOTT protocol in
an IoT environment. MOTT is natively a communication protocol that does not embed any security. Messages are
transmitted in clear text over the network. Being an IoT protocol, MOTT evolves in an environment with limited
resources, where energy remains an important factor in the implementation of security solutions. It is important
to increase security without affecting the autonomy of loT. This is what we propose by using the "Syracuse
conjuncture” (or the Collatz sequence) as a pseudo-random key generation mechanism to strengthen security and

authentication in MOTT.

KEYWORDS - Collatz conjecture, Collatz sequence, dynamic authentication, Internet of Things (IoT),

lightweight encryption, MQTT, Security

I. INTRODUCTION

This paper proposes a new method to
enhance the security of MQTT protocols in the
Internet of Things. Our solution, based on the
Syracuse conjuncture, includes three mechanisms
that we detail later. It extends existing research on
securing MQTT [1] [2] [3] [4] [5] and is based on
fundamental mathematical work relating to the
Syracuse/Collatz sequence [6] [7] [8] [9], innovating
by using this sequence as a pseudo-random
generator.

To facilitate understanding, the article is
organized as follows: a review of the work on the
security of the MQTT protocol and the Syracuse
situation, the research methodology, then the

Www.ijmret.org

presentation of our “MQTT-SYRACUSE” solution
and the results obtained.

II. RELATED WORKS

MQTT is a lightweight messaging protocol
based on the publish/subscribe model, designed to
facilitate data exchange between connected devices
in environments with bandwidth, power, and
hardware constraints [10] [11] [12].

Communication is message-oriented, with
each message associated with a topic to categorize
the data exchanged. This structure promotes
decoupled communication between entities,
reducing dependencies between senders and
receivers [3] [10].

ISSN: 2456-5628 Page 57

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

The MQTT protocol integrates Quality of
Service (QoS) to ensure message delivery between a
client and a broker. It allows communication
reliability to be adapted according to the
application's needs and network or hardware
constraints. According to the MQTT specification,
three QoS levels are defined [10] [13].

Current research explores several
approaches to enhance MQTT security, such as
integrating TLS/DTLS, certificate authentication, or
using intrusion detection systems (IDS) [1] [2] [4]
[5]. However, object constraints (CPU, memory,
energy) sometimes make the use of full TLS/DTLS
difficult or expensive, which limits their systematic
deployment on constrained devices [4] [12].

Common vulnerabilities identified in the
literature include:

. The absence of default encryption
of payloads, exposing clear text data to passive
observers [11] [14];

. Static/predictable identification of
topics (enumeration), facilitating spying and
scraping of sensitive topics [4] [15];

. Weak or missing authentication,
which allows for spoofing and unauthorized access
if strong authentication mechanisms are not in place
[16][18]:

. Centralized points of failure at the
broker level, making the ecosystem vulnerable if the
broker is compromised or unavailable [14] [17];

. Vulnerability to MITM, spoofing,
and replay attacks, especially in the absence of
integrity and non-repudiation mechanisms adapted
to [oT constraints [2] [4] [11].

Recent research has also focused on
improving the security of the MQTT protocol taking
into account the constraints of IoT devices [1] [2] [3]
[4]1 [5] [10] [11] [12] [14]. Several approaches can
be distinguished:

. Encrypted communications
security: the integration of TLS/DTLS has been
widely studied. However, the computational
complexity and energy consumption of these
protocols limit their adoption in constrained
environments [3] [4] [13] [12].

. Lightweight authentication and
access management: several studies propose the use
of mechanisms more suited to microcontrollers,
such as Pre-Shared Keys (PSK), lightweight HMAC

Www.ijmret.org

signatures, or even authentication schemes based on
the derivation of lightweight keys [1] [5] [16] [18].

. Symmetric encryption of
payloads: some authors suggest the use of low
computational cost symmetric algorithms, or even
pseudo-randomly generated binary masks to protect
messages in transit [4] [15] [19] [20].

. Obscuration and protection of
topics: in order to limit the enumeration and spying
on sensitive topics, dynamic renaming and
obscuration mechanisms have been explored [15]
[17].

. Intrusion detection system (IDS)
and defense in depth: several contributions have
studied the integration of IDS systems based on
machine learning or behavioral detection to identify
anomalies and attacks targeting MQTT [2] [5] [11]
[21][22].

Despite these efforts, few studies have
focused on the use of deterministic recursive
sequences as sources of pseudo-randomness to
enhance security. Exploiting the Syracuse sequence,
with its seed sensitivity and computational
simplicity, is a still largely unexplored avenue [23],
although its mathematical structure has been widely
studied in the literature [6] [7] [8] [9] [24].

IIL METHODOLOGY
1. Proposed approach

This paper proposes a general objective
which is to integrate the Syracuse sequence as a
deterministic pseudo-random generation
mechanism, in order to strengthen the security of
MQTT without compromising the performance
constraints specific to IoT environments [20] [23].
The sequence is defined recursively [20] [23],
according to the mathematical foundations
established by Allouche, Lagarias and Andaloro [6]
[8] [9], with modern proofs and demonstrations
proposed recently [7] [24].

F(n)= {n/2 ifnis even and 3n+1 ifn is odd}

Where n is the initial seed chosen in a
shared manner between the communicating entities.

This approach is based on three specific
objectives:

. Generate unique and dynamic IDs
for topics to reduce collisions and enumeration by
attackers.

ISSN: 2456-5628 Page 58

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

. Apply lightweight encryption of
payloads via Syracuse-derived bitmasks.
. Implement challenge-response

authentication based on the Syracuse suite.

1.1. Generation of unique IDs for topics

In a dense IoT network using MQTT, topic
management is a critical issue because each sensor
publishes its data on a specific topic (e.g.
sensor/temp). In such a network two main problems
appear [20] [23]:

. Topic collisions: Two sensors
may accidentally use the same topic name, leading
to confusion in message processing.

. Exposure of sensor information:
An attacker could guess the source of messages by
systematically enumerating topics, which reduces
the anonymity of IoT devices.

The proposed solution relies on the flight
time of an integer n_initial in the Syracuse sequence
to derive a unique identifier for the topic. The
principle is as follows:

. Each sensor has a secret seed
n_initial (for example derived from its hardware ID
or a timestamp hash).

. We calculate the number of steps
necessary for the Syracuse sequence to reach 1
(called flight time).

. This number is used to create a
unique topic, for
/sensors/syracuse/<flight_time>

Examples: n_initial = 10 — flight
time = 27 — topic = /sensors/syracuse/27
n_initial = 42 — flight
time = 8 — topic = /sensors/syracuse/8

The advantages of this method are:

. Guaranteed uniqueness: different
seeds generally produce different flight times, which

example:

reduces collisions.

. Dynamic and unpredictable: an
attacker cannot easily predict the topic without
knowing the initial seed.

. Anonymization: the topic does
not contain directly identifiable information about
the sensor.

. Lightweight and IoT compatible:
time-of-flight calculation is very fast and consumes
few resources.

Www.ijmret.org

The limitations and precautions to be taken
following this method are as follows:

. If multiple sensors use the same
seed, collision may occur. Therefore, it is
recommended to add a salt or combine the seed with
a unique sensor ID (n_initial = hash(sensor ID +
timestamp)).

. This method is not
cryptographically secure on its own, it must be used
as a complement to security mechanisms (TLS,
XOR encryption, etc.).

1.2. Lightweight encryption of payloads

The MQTT protocol, by default, does not
encrypt data exchanged between sensors and
brokers unless TLS/SSL is used. However, TLS can
be computationally expensive and energy-intensive
for IoT microcontrollers. To lightly secure non-
critical data while remaining lightweight and IoT-
friendly, we propose an XOR cipher based on the
Syracuse suite.

The principle of the lightweight payload
encryption method is as follows:

. Shared seed: the transmitter
(sensor) and the receiver (broker) have a secret
integer n_initial [19] [20].

. Binary mask: generated from the
least significant bits (LSB) of each term of the
Syracuse sequence.

. Encryption: The payload is XOR
with the generated mask to produce an encrypted
message.

This technique relies on the sensitivity of
time-of-flight and Syracuse terms, even close seeds
produce different binary sequences, making the
mask difficult to predict without knowing the seed.
As a concrete example we have:

. Payload: [1,0,1,0]
. Mask (for n=6): [0,1,0,1]
. Encrypted payload: [170, 0"1,

170, 0M] =[1,1,1,1]

This method has certain advantages which
are listed below:

. Lightweight: Simple calculation,
suitable for low-power microcontrollers.

. Low overhead: No heavy crypto
library or full TLS protocol.

. Dynamic: Each transmission can
use a different seed to vary the mask.

ISSN: 2456-5628 Page 59

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

. IoT Compatible: Works with
standard MQTT and limited microcontrollers.

The lightweight payload encryption
method has its limitations which are:

. Limited security: if the attacker
knows the seed, he can decrypt the messages.

. Non-standard: does not replace
TLS/AES for sensitive data.

. Limited payload length: The mask
must be regenerated for longer or continuous
payloads.

1.3. Lightweight authentication

In MQTT, traditional authentication relies
on static login/password, which presents several
vulnerabilities. Passwords can be intercepted if TLS
is not used. Resource-constrained IoT devices
cannot always support heavyweight authentication
protocols. To strengthen authentication while
remaining lightweight and suitable for
microcontrollers, we propose a challenge-response
mechanism based on the Syracuse sequence.
Following this method, the broker sends an integer
n as a challenge to the sensor. The sensor calculates
the next term of the Syracuse sequence from n and
sends it back to the broker. Finally, the broker
checks the response if the term matches the expected
sequence; the connection is allowed, otherwise it is
denied [19] [23]. This approach takes advantage of
the deterministic but short-term unpredictable nature
of Syracuse, without knowing the exact challenge or
follow-up, an attacker cannot predict the response.
A concrete example of the use of lightweight
authentication is given below:

. The Challenge: n=7
. The sensor calculates 3*7 +1=22
. The broker checks: if 22

corresponds to the expected term — connection
accepte.

This lightweight authentication method has
several advantages, such as being lightweight with
simple computation suitable for microcontrollers,

. If an attacker knows the logic and
captures multiple challenge-responses, he can
possibly predict what happens next.

. It does not replace TLS or strong
cryptographic mechanisms for sensitive data.
. Security depends on the random

generation and confidentiality of the initial seeds.

2. Experimental parameters

In this study, a hardware and software
environment is required for its implementation. The
hardware environment used is a computer with a
Windows or Linux operating system acting as a
broker. For the software environment, an MQTT
client with a Paho-MQTT library (Python), an
MQTT broker Mosquitto (open-source, lightweight)
and the Syracuse scripts implemented in Python [20]
[23]. The Python language was chosen for its
flexibility, efficiency and compatibility with
existing loT libraries [23].

3. Experimental validation

The methodology will be validated by
software simulation in a classic MQTT environment
(Eclipse Mosquitto) [20]. Performance
measurements (latency, CPU overload, memory
consumption) are performed. Security tests against
targeted attacks (topic enumeration, payload
sniffing, identity theft) are applied to the simulation
[19] [23]. The results will allow comparing the
Syracuse approach with existing methods (TLS,
PSK, IDS) in terms of trade-off between security
and computational lightness (energy, resources)
[20].

Iv. ALGORITHM OF OUR « MQTT-
SYRACUSE »
1. Basic algorithm
Our algorithm for lightweight MQTT
security using the Syracuse conjecture follows the
following procedure:

i)]] o . The sensor generates
improved security preventing static authentication environmental data (temperature)
and reducing the risk of simple replay. Quite . The data is encrypted with the
dynamlc', each challe'nge I_S unique to' e.:ach Syracuse mask before sending to the broker.
connection and compatible with IoT, the minimal . The message is posted on a topic
implementation and can be integrated directly into based on flight time
MQTT. But some limitations remain to be deplored,
such as those cited:

Www.ijmret.org ISSN: 2456-5628 Page 60

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

. The broker regenerates the
Syracuse mask, decrypts the payload and stores the
clear data.

. Syracuse authentication is used
during connection to verify the identity of the
sensor.

2. Comparison of Syracuse conjecture
with a standard solution implemented
in MQTT

The standard MQTT protocol does not
integrate any security solution, the data circulates in
clear text on the network. It is necessary to apply a
minimum of security such as encryption,
authentication and use of secure ID. In the security
standards implemented in MQTT, TLS/SSL is used
for encryption, Login/Password for authentication
and random UUID (Universally Unique Identifier)
for generating dynamic IDs for topics. The Syracuse
conjecture integrates MQTT for security, XOR +
Collatz Mask is used for encryption, Collatz
Challenge-Response for authentication and
Syracuse Time of Flight for generating dynamic IDs
for topics.

Needs Standard Syracuse
Solution solution
Encryption TLS/SSL XOR + Collatz
Mask [19]

Authentication | Login/Password | Collatz
Challenge-
Response [23]

ID Generation | Random UUIDs | Flight time from
Syracuse [20] [23]

3. Example code (Python + Paho-MQTT)

The Syracuse conjecture is integrated into
MQTT for lightweight security. To validate the
feasibility of the proposed approach, an
experimental implementation was performed using
the MQTT protocol and an integration of the
Syracuse suite for lightweight encryption and
authentication.

The implementation requires a hardware
and software environment. The hardware
environment uses a computer with a Windows or
Linux operating system acting as a broker.

For the software environment:

. MQTT client: Paho-MQTT
library (Python).

Www.ijmret.org

ISSN: 2456-5628

. MQTT Broker: Mosquitto (open-
source, lightweight).
. Syracuse scripts: implemented in

Python for mask generation and authentication
mechanism.

The implementation covers three (3) main
components.

. Lightweight encryption of
payloads: generation of a binary mask from the
Syracuse sequence and application of an XOR
between the mask and the sensor payload.

. Generate unique IDs for topics:
Use Syracuse's time of flight as a dynamic topic
suffix.

. Example: sensors/temp/27 for an
initial n= 10 (time of flight = 27).
. Lightweight authentication:

Challenge-response where the broker sends n, and
the sensor responds with the next term in the
sequence.
Example code (Python):
import paho.mqtt.client as mqtt
Generation of the Syracuse mask
def syracuse _mask(n, length):
mask =[]
for _in range(length):
mask.append(n % 2) # LSB
n=n//2ifn%2==0e¢lse3 *n+1
return mask
XOR encryption function
def encrypt(payload, mask):
return bytes([p * m for p, m in
zip(payload, mask)])
Initial settings
broker ="127.0.0.1"
n_shared =42 # shared key
payload =b"25.6" # sensor data
Mask generation and encryption

mask = syracuse_mask(n_shared,
len(payload))
encrypted payload = encrypt(payload,

mask)
MQTT Connection and Publication
client = mqtt.Client()
client.connect(broker, 1883, 60)
topic = f""sensors/syracuse/{len(mask)}"
client.publish(topic, encrypted payload)
print(f" Message published on {topic} :
{encrypted payload}")

Page 61

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

V. RESULT AND DISCUSSION
1. Result

The python code example has been
integrated connection time to the broker, the
percentage of CPU and memory used by Mosquitto
in order to obtain comparable data based on native
MQTT implementations, MQTT with
Username/Password and TLS, and finally MQTT
with the Syracuse conjuncture.

1.1. Test 1 native MQTT

Test 1 concerns the connection time to the
broker, the percentage of CPU and memory used by
native Mosquitto. A python script simulates an
MQTT client that establishes a connection with the
broker and returns the connection data.

import time

import psutil

import paho.mgqtt.client as mqtt

#

MQTT SETTINGS

#

BROKER ="127.0.0.1"

PORT = 1883

TOPIC = "temperature"

PAYLOAD = "25.6°C"

#

CALLBACKS

#

def on_connect(client, userdata, flags, rc):

ifrc==0:

print("Connection successful £4")
else:
print("Connection failure, code:", rc)
def on_disconnect(client, userdata, rc):
print("Logged out with code:", rc)

#

START OF CPU/MEMORY
MONITORING

#

Search for the Mosquitto process
mosquitto_proc = None
for proc in psutil.process_iter(['name']):
if proc.info['name'] and "mosquitto" in
proc.info['name'].lower():
mosquitto_proc = proc
break

Www.ijmret.org

if mosquitto_proc is None:
raise Exception("Process mosquitto.exe

not found!")

#

MEASURING CONNECTION TIME +
CPU/MEMORY

#

client = mqtt.Client()

client.on_connect =on_connect

client.on_disconnect = on_disconnect

Measurements before connection

cpu_before =
mosquitto_proc.cpu_percent(interval=None)

mem_before =
mosquitto_proc.memory_percent()

start_time = time.time()

Login to the broker

client.connect(BROKER, PORT,
keepalive=60)

end time = time.time()

latency ms = (end_time - start time) *
1000

Measurements after connection

cpu_after =
mosquitto_proc.cpu_percent(interval=0.5) #
average over 0.5s

mem_after =
mosquitto_proc.memory_percent()

print(f* Broker connection time:
{latency ms:.2f} ms")

print(f'"CPU used by Mosquitto
{cpu_after:.2f} %")

print(f* Memory used by Mosquitto:
{mem_after:2f} %")

#

PUBLISHING THE MESSAGE

#

client.loop_start() # needed for callbacks

result = client.publish(TOPIC,
PAYLOAD)

if result.rc =

mqtt MQTT _ERR_SUCCESS:
print(f" Message published {TOPIC} :
{PAYLOAD}")
else:
print("Failed to publish ")
time.sleep(1) # allow time to send
client.loop_stop()
client.disconnect()

ISSN: 2456-5628 Page 62

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

The test is carried out five (5) times, in
order to have the average time and percentage. The
results are as follows:

1.2. Test2: MQTT with
Username/Password, TLS and Self-
Signed Certificate

Test 2 concerns the connection time to the
broker, the percentage of CPU and memory used by
Mosquitto using password, TLS and a self-signed
certificate. A python script simulates an MQTT
client that establishes a connection with the secure
broker and returns the connection data.

import time

import psutil

import paho.mgqtt.client as mqtt

#

MQTT SETTINGS

#

BROKER ="127.0.0.1"

PORT = 8883

USERNAME = "victor"

PASSWORD = "root"

CA_CERT = r"C:\Program
Files\mosquitto\certs\mqtt ca.crt" # Path to CA
certificate

payload =r"25.6°C"

topic = "temperature"

#

CALLBACKS MQTT

#

def on_connect(client, userdata, flags, rc):

ifrc ==0:

Port TLS

print("Connection successful §£4")
else:
print("Connection failure, code:", rc)
def on_disconnect(client, userdata, rc):
print("Logged out with code:", rc)

#
Search for the Mosquitto process
#
mosquitto_proc = None

for proc in psutil.process_iter(['name']):

if proc.info['name'] and "mosquitto" in
proc.info['name'].lower():
mosquitto_proc = proc
break
if mosquitto proc is None:

Www.ijmret.org

ISSN: 2456-5628

raise Exception("Process mosquitto.exe
not found!")

Trial 1 | Trial2 | Trial | Trial | Trial
3 4 5
Connection 3.43 6.70 7.66 | 7.78 | 8.96
time (ms)
CPU used (%) 0.00 0.00 0.00 | 0.00 | 0.00
Memory used 0.14 0.14 | 0.14 | 0.14 | 0.14

#

MEASURING CONNECTION TIME +
CPU/MEMORY

#

client =
mgqtt.Client(protocol=mqtt. MQTTv311)

client.username pw_set(USERNAME,
PASSWORD)

client.tls set(ca_certs=CA_CERT)

client.on_connect =on_connect

client.on_disconnect = on_disconnect

Start of measurement

start_time = time.time()

cpu_before =
mosquitto_proc.cpu_percent(interval=None)

mem_before =
mosquitto_proc.memory_percent()

client.connect(BROKER,
keepalive=60)

end_time = time.time()

cpu_after =
mosquitto_proc.cpu_percent(interval=0.5)

mem_after =
mosquitto_proc.memory_percent()

latency ms = (end_time - start time) *
1000

print(f"\n Secure connection time to the
broker: {latency ms:.2f} ms")

print(f" CPU used by
{cpu_after:.2f} %")

print(f' Memory used by Mosquitto:
{mem_after:.2f} %")

#

PUBLISHING THE MESSAGE

#

client.loop_start()

client.publish(topic, payload)

print(f"Message publié sur {topic}
{payload}")

client.loop_stop()

client.disconnect()

Mosquitto:

The test is carried out five (5) times, in

Page 63

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

order to have the average time and percentage. The
results are as follows:

Triall | Trial2 | Trial3 | Trial4 | Trial5

Connection | 19.56 | 21.07 | 34.40 | 20.18 | 18.63

time (ms)

CPU used 0.00 | 0.00 | 0.00 | 0.00 | 0.00

(%)

Memory 0.16 | 0.16 | 0.16 | 0.16 | 0.16

used

1.3. Test 3: MQTT with the Syracuse
conjuncture

Test 3 is for broker connection time, CPU
and memory usage percentage by Mosquitto using
Syracuse, TLS and self-signed certificate. A python
script simulates an MQTT client that establishes a
connection with the secure broker and returns the
connection data.

import time

import psutil

import paho.mgqtt.client as mqtt

#

FUNCTIONS

#

def syracuse_mask(n, length):

""" Generates a binary mask from

nmn

Syracuse
mask =[]
for _in range(length):
mask.append(n % 2) # LSB
n=n//2ifn%2==0e¢lse3 *n+1
return mask

def encrypt(payload, mask):
""" XOR encryption of the payload with
the mask """
return bytes([p ~ m for p, m in
zip(payload, mask)])
#
MQTT SETTINGS
#
BROKER ="127.0.0.1"
PORT = 1883
TOPIC = "temperature"
N_SHARED =42

Www.ijmret.org

PAYLOAD = "25.6°C"

#

GENERATION OF THE ENCRYPTED
MESSAGE

#

payload bytes = PAYLOAD.encode("utf-

8")
mask = syracuse mask(N _SHARED,
len(payload_bytes))
encrypted payload =
encrypt(payload_bytes, mask)
decrypted payload =
encrypt(encrypted payload, mask).decode("utf-8")
#
CALLBACKS MQTT
#
def on_connect(client, userdata, flags, rc):
ifrc ==0:

print("Connection successful o
end="")
else:

print("Connection failure, code:", rc)
#
MEASURE TIME + RESOURCES
#
mosquitto_proc = None

for proc in psutil.process_iter(attrs=["pid",
"name"]):
if "mosquitto” in
proc.info["name"].lower():
mosquitto_proc = proc
break
if mosquitto_proc is None:
print(" 4. Unable to find the Mosquitto
process. Check that it is running.")
exit(1)
cpu_before =
mosquitto_proc.cpu_percent(interval=None)
mem_before =
mosquitto_proc.memory percent()
start_time = time.time()
client = mqtt.Client()
client.on_connect = on_connect
client.connect(BROKER, PORT,
keepalive=60)
end_time = time.time()
latency ms = (end time - start time) *
1000

ISSN: 2456-5628 Page 64

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

cpu_after =
mosquitto_proc.cpu_percent(interval=None)

mem_after =
mosquitto_proc.memory percent()

print(f\n Broker connection time:
{latency ms:.2f} ms")
print(f* CPU wused by Mosquitto:
{cpu_after:.2f} %")
print(f* Memory used by Mosquitto:
{mem_after: 2f} %")
#
PUBLISHING THE MESSAGE
#
client.loop_start()
result = client.publish(TOPIC,
encrypted payload)
if result.rc ==
mqtt. MQTT_ERR SUCCESS:
print(f" Clear message:
{PAYLOAD}")
print(f" s Published encrypted

message sur {TOPIC} : {encrypted payload}")

print(f" i Decrypted message
(control): {decrypted payload}")
else:
print(" X Failed to publish ")
time.sleep(1)
client.loop_stop()

client.dionnect()

The test is carried out five (5) times, in
order to have the average time and percentage. The
results are as follows:

Triall | Trial2 | Trial3 | Trial4 | Trial5
Connection | 14.79 | 11.95 | 14.07 | 12.56 | 13.89
time (ms)
CPU used 0.00 0.00 0.00 0.00 0.00
(%)
Memory 0.14 0.14 0.14 0.14 0.14
used

1.4. Comparative balance sheet

The analysis of the three (3) tests reveals

that the resource consumption data of native MQTT
and MQTT with the Syracuse situation are much
closer than that of MQTT using passwords and TLS.
The percentage of CPU used by the three (3) tests is
zero, that is to say 0.00%.

Www.ijmret.org

ISSN:

2456-5628

Native | Secure MQTT
MQTT | MQTT with
Syracuse
Average connection 10.675 | 26.515 13.37
time (ms)
Average CPU used 0.00 0.00 0.00
(%)
Average memory 0.14 0.16 0.14
used
2. Discussion
After following the experimental
implementation procedure, the following
experimental results were obtained:
. Encryption/decryption is
immediate,
. Memory consumption is
negligible (a few bytes for the mask),
. Challenge-response

authentication works correctly without network
overhead,

. The system remains compatible
with a standard MQTT broker, without protocol
modifications.

The experimental implementation carried
out with the integration of the Syracuse conjecture
in MQTT made it possible to highlight the
contributions, but also the limits, of this approach.
% Computational performance:

. The operations related to the
sequence (division by 2 or 3n+l
very light, even for

Syracuse
calculation) are
microcontrollers,

. XOR encryption/decryption is
near-instantaneous (< 1 ms for a 10-byte payload),

. Memory consumption remains
negligible, because the mask is generated in real
time without massive storage.

This makes the approach suitable for
resource-constrained environments.

% Energy consumption:

. Unlike TLS/SSL, which requires
heavy cryptographic calculations (RSA, AES, key
negotiation), the Syracuse approach consumes little
energy,

. Les montrent une
réduction significative du temps processeur utilisé,

mesures

Page 65

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

donc une meilleure autonomie énergétique des

capteurs.

Robustness and security:

. Lightweight encryption: prevents
trivial interception of messages, but remains

vulnerable to attack if the seed n initial is

discovered,

. Challenge-response
authentication: improves protection against
unauthorized connections, but is not resilient to
prolonged observation attacks (replay or sequence
learning).

. Dynamic topics: using Syracuse
flight time as an identifier prevents simple topic
enumeration by an attacker, but does not provide a
strong guarantee of anonymization.

The approach is effective for obfuscation
and basic security, but does not replace TLS or AES
for critical data (e-health, financial transactions).

%+ Compatibility and integration: The approach is
fully compatible with standard MQTT, as it
relies solely on the transformation of payloads
and topics. No changes are required on the
Mosquitto broker side, the Syracuse logic is
integrated only in the client and receiver. This
allows for gradual deployment without
disrupting existing infrastructures.

% Comparison with standard mechanisms:

Criteria TLS/SSL Syracuse (proposed)
(standard)
Security Strong (AES, | Low to medium
RSA) (simple XOR)
Energy High Very low
consumption
Complexity High (use of Very low (simple
libraries) operations)
IoT Average Excellent (Limited
Compatibility MCUs/
Microcontroller
Units)
Recommended | Critical data Non-sensitive data /
use prototyping

This assessment highlights that integrating
Syracuse into MQTT is a pragmatic compromise. It
is not a robust encryption solution, but an additional
layer of obfuscation and lightweight authentication.
It is ideal for scenarios with low-criticality data
(weather, environmental sensors). However, it can

Www.ijmret.org ISSN:

2456-5628

be used in addition to standard protocols (TLS,
AES) to enhance the diversity of security
mechanisms and complicate the work of an attacker.

VL CONCLUSION ET PERSPECTIVES
In this paper, we explored a novel approach
to enhance the security of the MQTT protocol in
constrained IoT environments, by exploiting the
deterministic but unpredictable properties of the
Syracuse suite. The proposed methodology covers
three main axes:

. The generation of dynamic
identifiers for topics, reducing the risks of
enumeration and collisions, while remaining

compatible with the publication/subscription logic
of MQTT,

. Lightweight encryption of
payloads using binary masks derived from Syracuse,
offering minimal confidentiality adapted to the
CPU, memory and energy constraints of connected
objects.

. Syracuse-based challenge-
response authentication, introducing a dynamic and
renewable mechanism, avoiding the systematic use
of full TLS or heavy certificates.

This approach has several advantages:
simplicity of implementation on microcontrollers,
low computational overhead and significant
improvement in the security of MQTT flows against
passive and active attacks (topic enumeration,
sniffing, spoofing, replay).

The perspectives offered by this study are
numerous:

. Integration with other lightweight
cryptographic primitives to enhance resistance to
cryptanalytic attacks,

. Evaluation on larger and more
heterogeneous IoT networks, with multi-broker and
multi-device scenarios,

. Formal security analysis and
quantification of the effective entropy generated by
Syracuse iterations.

In conclusion, the use of deterministic
recursive suites such as Syracuse constitutes a
promising avenue for reconciling lightness and
security in MQTT-based IoT systems, offering an
interesting compromise between performance and
protection of sensitive data.

Page 66

International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

REFERENCES

Journal Papers:

[1] SAHMI 1. Amélioration de la sécurité des
Objets Connectés (IoT) utilisant le protocole
MQTT dans le domaine de la E-santé. Toubkal
— IMIST (2022).

[2] THIANDOUM A. (2024) L’intelligence
artificielle pour la détection d’intrusions dans
I’Internet des Objets : le cas du Protocole
MQTT. Université Assane Seck de Ziguinchor
(2024).

[3] LAAROUSSI Z., NOVO O. (2021)
Performance Analysis of the Security
Communication in CoAP and MQTT. IEEE
CCNC 2021.

[4] AL-OTAIBI N. S., SAYED AHMED H. I,
KAMEL S. O. M., EL-KABBANY G. F.
Secure Enhancement for MQTT Protocol
Using Distributed Machine Learning
Framework. Sensors, 24(5):1638 (2024).

[5] HUSNAIN M., HAYAT K., CAMBIASO E.,
FAYYAZ U. U.,, MONGELLI M., AKRAM
H., ABBAS S. G., SHAH G. A. Preventing
MQTT Vulnerabilities Using IloT-Enabled
Intrusion Detection System. Sensors,
22(2):567. (2022)

[6] ALLOUCHE J.-P. Sur la conjecture de
“Syracuse-Kakutani-Collatz”. Séminaire de
Théorie des Nombres de Bordeaux, vol. 8
(1978-1979), pp. 1-16.

[7] IDOWU M. A., A novel theoretical framework
formulated for information discovery from
number system and Collatz conjecture data.
Procedia Computer Science, vol. 61, pp. 105—
111, 2015.

[8] ANDALORO P. J., The 3x + 1 problem and
directed graphs. Fibonacci Quarterly, pp. 43—
54, 2000.

[9] LAGARIAS J. C., The 3x + 1 problem and its
generalizations. The American Mathematical
Monthly, vol. 92, no. 1, pp. 3-23, 1985.

[10] KHELILI F. K., BENCHOULA R,
HANACHI N. E. FEtude comparative de
protocoles de communication dans ITOT.
UNIVERSITY OF KASDI MERBAH
OUARGLA. 2020

[11] Dinculeana D., Cheng X. Vulnerabilities and
limitations of MQTT protocol used between
IoT devices. Applied Sciences, 9(5), 848.2019

[12] Nebbione G., Calzarossa M. C. Security of IoT
Application Layer Protocols: Challenges and
Findings. Future Internet, 12(3), 55. 2020.

[13] V Seoane, Carlos Garcia-Rubio, F Almenares,
C Campo. (3 aolit 2021). Performance
evaluation of CoAP and MQTT with security
support for IoT environments. Carlos III de

Madrid, Av. de la Universidad, 30, Leganés
(Madrid), Espagne. 2021.

[14] Shahwan, A., Mohammed Z., Smith, B. K. (3
janvier 2025). Enhancing IoT communication
security: Analysis and mitigation of
vulnerabilities in MQTT, CoAP, and XMPP
protocols. Authorea.2025.

[15] SEGARRA C., DELGADO G. R,
SCHIAVONI V. MQT-TZ: Hardening IoT
Brokers Using ARM TrustZone. 2022

[16] HANIF A., ILYAS M. (2) Effective Feature
Engineering pour MQTT Security. Sensors,
24(6) :1782. 2024.

[17] DiPaolo E., Bassetti E., Spognardi A. Security
assessment of common open source MQTT
brokers and clients. In Proceedings of the
Italian Conference on Cybersecurity (ITASEC
2023).

[18] TOE E. Renforcement de la cyber-résilience
des brokers MQTT contre les attaques DoS et
les défaillances grice a une architecture
décentralisée basée sur la blockchain et
smartcontrat. Universit¢ du Québec a
Chicoutimi. 2024.

[19] Buccafurri F., De Angelis V., Lazzaro S.,
Vangala A. MQTT-E: E2E encryption in
MQTT wvia proxy re-encryption avoiding
broker overloading. Ad Hoc Networks, 176,
Article 103878. 2025.

[20] De Rango F., Spina M. G., lera A.
DLST-MQTT : Dynamic and lightweight
security over topics MQTT. Future Generation
Computer Systems, 166, Article 107625. 2025

[21] AlencarR.C., Fernandes B.J. T.,
LimaP.H.E.S., Silva C. M. R. da. Al
techniques for automated penetration testing in
MQTT networks. International Journal of
Computers and Applications, 47(1), 1-16.
2024.

[22] Swain M., Tripathi N., Sethi K. Identifying
communication sequence anomalies to detect
DoS attacks against MQTT. Computers &
Security, 105, Article 104526. 2025.

[23] Rodriguez-Mufioz J. D., Tlelo-Cuautle E., de
la Fraga L. G. Chaos-based authentication of
encrypted images under MQTT for IoT
protocol. Integration, 102(4), Article 102378.
2025.

[24] HADEMINE A. V. E., Démonstration de la
conjecture de Syracuse. Nantes Univ — UFR
ST — Nantes Université¢ — UFR des Sciences et
des Techniques, 2024.

Www.ijmret.org ISSN: 2456-5628 Page 67

