

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 57

Enhancing the security of the MQTT protocol in the

Internet of Things using the Syracuse conjecture

OUATTARA YACOUBA1, COMPAORE WENDPUIRE OUSMANE2,

OUEDRAOGO PATINDE VICTOR MARIE JACQUES3, TRAORE YAYA4
1
(Science and Technology Department, Institut Burkinabè des Arts et des Métiers (IBAM)/ Université Joseph Ki-

Zerbo, Burkina Faso)
2
(Institut Universitaire de Technologie (IUT)/ Université Nazi BONI, Burkina Faso)

3
(Science and Technology Department, Institut Burkinabè des Arts et des Métiers (IBAM)/ Université Joseph Ki-

Zerbo, Burkina Faso)

4
(Science and Technology Department, Institut Burkinabè des Arts et des Métiers (IBAM)/ Université Joseph Ki-

Zerbo, Burkina Faso)

ABSTRACT: This article proposes a scientific contribution to strengthen the security of the MQTT protocol in

an IoT environment. MQTT is natively a communication protocol that does not embed any security. Messages are

transmitted in clear text over the network. Being an IoT protocol, MQTT evolves in an environment with limited

resources, where energy remains an important factor in the implementation of security solutions. It is important

to increase security without affecting the autonomy of IoT. This is what we propose by using the "Syracuse

conjuncture" (or the Collatz sequence) as a pseudo-random key generation mechanism to strengthen security and

authentication in MQTT.

KEYWORDS - Collatz conjecture, Collatz sequence, dynamic authentication, Internet of Things (IoT),

lightweight encryption, MQTT, Security

I. INTRODUCTION

This paper proposes a new method to

enhance the security of MQTT protocols in the

Internet of Things. Our solution, based on the

Syracuse conjuncture, includes three mechanisms

that we detail later. It extends existing research on

securing MQTT [1] [2] [3] [4] [5] and is based on

fundamental mathematical work relating to the

Syracuse/Collatz sequence [6] [7] [8] [9], innovating

by using this sequence as a pseudo-random

generator.

To facilitate understanding, the article is

organized as follows: a review of the work on the

security of the MQTT protocol and the Syracuse

situation, the research methodology, then the

presentation of our “MQTT-SYRACUSE” solution

and the results obtained.

II. RELATED WORKS

MQTT is a lightweight messaging protocol

based on the publish/subscribe model, designed to

facilitate data exchange between connected devices

in environments with bandwidth, power, and

hardware constraints [10] [11] [12].

Communication is message-oriented, with

each message associated with a topic to categorize

the data exchanged. This structure promotes

decoupled communication between entities,

reducing dependencies between senders and

receivers [3] [10].

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 58

The MQTT protocol integrates Quality of

Service (QoS) to ensure message delivery between a

client and a broker. It allows communication

reliability to be adapted according to the

application's needs and network or hardware

constraints. According to the MQTT specification,

three QoS levels are defined [10] [13].

Current research explores several

approaches to enhance MQTT security, such as

integrating TLS/DTLS, certificate authentication, or

using intrusion detection systems (IDS) [1] [2] [4]

[5]. However, object constraints (CPU, memory,

energy) sometimes make the use of full TLS/DTLS

difficult or expensive, which limits their systematic

deployment on constrained devices [4] [12].

Common vulnerabilities identified in the

literature include:

• The absence of default encryption

of payloads, exposing clear text data to passive

observers [11] [14];

• Static/predictable identification of

topics (enumeration), facilitating spying and

scraping of sensitive topics [4] [15];

• Weak or missing authentication,

which allows for spoofing and unauthorized access

if strong authentication mechanisms are not in place

[16] [18]:

• Centralized points of failure at the

broker level, making the ecosystem vulnerable if the

broker is compromised or unavailable [14] [17];

• Vulnerability to MITM, spoofing,

and replay attacks, especially in the absence of

integrity and non-repudiation mechanisms adapted

to IoT constraints [2] [4] [11].

Recent research has also focused on

improving the security of the MQTT protocol taking

into account the constraints of IoT devices [1] [2] [3]

[4] [5] [10] [11] [12] [14]. Several approaches can

be distinguished:

• Encrypted communications

security: the integration of TLS/DTLS has been

widely studied. However, the computational

complexity and energy consumption of these

protocols limit their adoption in constrained

environments [3] [4] [13] [12].

• Lightweight authentication and

access management: several studies propose the use

of mechanisms more suited to microcontrollers,

such as Pre-Shared Keys (PSK), lightweight HMAC

signatures, or even authentication schemes based on

the derivation of lightweight keys [1] [5] [16] [18].

• Symmetric encryption of

payloads: some authors suggest the use of low

computational cost symmetric algorithms, or even

pseudo-randomly generated binary masks to protect

messages in transit [4] [15] [19] [20].

• Obscuration and protection of

topics: in order to limit the enumeration and spying

on sensitive topics, dynamic renaming and

obscuration mechanisms have been explored [15]

[17].

• Intrusion detection system (IDS)

and defense in depth: several contributions have

studied the integration of IDS systems based on

machine learning or behavioral detection to identify

anomalies and attacks targeting MQTT [2] [5] [11]

[21] [22].

Despite these efforts, few studies have

focused on the use of deterministic recursive

sequences as sources of pseudo-randomness to

enhance security. Exploiting the Syracuse sequence,

with its seed sensitivity and computational

simplicity, is a still largely unexplored avenue [23],

although its mathematical structure has been widely

studied in the literature [6] [7] [8] [9] [24].

III. METHODOLOGY

1. Proposed approach

This paper proposes a general objective

which is to integrate the Syracuse sequence as a

deterministic pseudo-random generation

mechanism, in order to strengthen the security of

MQTT without compromising the performance

constraints specific to IoT environments [20] [23].

The sequence is defined recursively [20] [23],

according to the mathematical foundations

established by Allouche, Lagarias and Andaloro [6]

[8] [9], with modern proofs and demonstrations

proposed recently [7] [24].

F(n)= {n/2 if n is even and 3n+1 if n is odd}

Where n is the initial seed chosen in a

shared manner between the communicating entities.

This approach is based on three specific

objectives:

• Generate unique and dynamic IDs

for topics to reduce collisions and enumeration by

attackers.

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 59

• Apply lightweight encryption of

payloads via Syracuse-derived bitmasks.

• Implement challenge-response

authentication based on the Syracuse suite.

1.1. Generation of unique IDs for topics

In a dense IoT network using MQTT, topic

management is a critical issue because each sensor

publishes its data on a specific topic (e.g.

sensor/temp). In such a network two main problems

appear [20] [23]:

• Topic collisions: Two sensors

may accidentally use the same topic name, leading

to confusion in message processing.

• Exposure of sensor information:

An attacker could guess the source of messages by

systematically enumerating topics, which reduces

the anonymity of IoT devices.

The proposed solution relies on the flight

time of an integer n_initial in the Syracuse sequence

to derive a unique identifier for the topic. The

principle is as follows:

• Each sensor has a secret seed

n_initial (for example derived from its hardware ID

or a timestamp hash).

• We calculate the number of steps

necessary for the Syracuse sequence to reach 1

(called flight time).

• This number is used to create a

unique topic, for example:

/sensors/syracuse/<flight_time>

 Examples: n_initial = 10 → flight

time = 27 → topic = /sensors/syracuse/27

 n_initial = 42 → flight

time = 8 → topic = /sensors/syracuse/8

The advantages of this method are:

• Guaranteed uniqueness: different

seeds generally produce different flight times, which

reduces collisions.

• Dynamic and unpredictable: an

attacker cannot easily predict the topic without

knowing the initial seed.

• Anonymization: the topic does

not contain directly identifiable information about

the sensor.

• Lightweight and IoT compatible:

time-of-flight calculation is very fast and consumes

few resources.

The limitations and precautions to be taken

following this method are as follows:

• If multiple sensors use the same

seed, collision may occur. Therefore, it is

recommended to add a salt or combine the seed with

a unique sensor ID (n_initial = hash(sensor_ID +

timestamp)).

• This method is not

cryptographically secure on its own, it must be used

as a complement to security mechanisms (TLS,

XOR encryption, etc.).

1.2. Lightweight encryption of payloads

The MQTT protocol, by default, does not

encrypt data exchanged between sensors and

brokers unless TLS/SSL is used. However, TLS can

be computationally expensive and energy-intensive

for IoT microcontrollers. To lightly secure non-

critical data while remaining lightweight and IoT-

friendly, we propose an XOR cipher based on the

Syracuse suite.

The principle of the lightweight payload

encryption method is as follows:

• Shared seed: the transmitter

(sensor) and the receiver (broker) have a secret

integer n_initial [19] [20].

• Binary mask: generated from the

least significant bits (LSB) of each term of the

Syracuse sequence.

• Encryption: The payload is XOR

with the generated mask to produce an encrypted

message.

This technique relies on the sensitivity of

time-of-flight and Syracuse terms, even close seeds

produce different binary sequences, making the

mask difficult to predict without knowing the seed.

As a concrete example we have:

• Payload: [1,0,1,0]

• Mask (for n=6): [0,1,0,1]

• Encrypted payload: [1^0, 0^1,

1^0, 0^1] = [1,1,1,1]

This method has certain advantages which

are listed below:

• Lightweight: Simple calculation,

suitable for low-power microcontrollers.

• Low overhead: No heavy crypto

library or full TLS protocol.

• Dynamic: Each transmission can

use a different seed to vary the mask.

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 60

• IoT Compatible: Works with

standard MQTT and limited microcontrollers.

The lightweight payload encryption

method has its limitations which are:

• Limited security: if the attacker

knows the seed, he can decrypt the messages.

• Non-standard: does not replace

TLS/AES for sensitive data.

• Limited payload length: The mask

must be regenerated for longer or continuous

payloads.

1.3. Lightweight authentication

In MQTT, traditional authentication relies

on static login/password, which presents several

vulnerabilities. Passwords can be intercepted if TLS

is not used. Resource-constrained IoT devices

cannot always support heavyweight authentication

protocols. To strengthen authentication while

remaining lightweight and suitable for

microcontrollers, we propose a challenge-response

mechanism based on the Syracuse sequence.

Following this method, the broker sends an integer

n as a challenge to the sensor. The sensor calculates

the next term of the Syracuse sequence from n and

sends it back to the broker. Finally, the broker

checks the response if the term matches the expected

sequence; the connection is allowed, otherwise it is

denied [19] [23]. This approach takes advantage of

the deterministic but short-term unpredictable nature

of Syracuse, without knowing the exact challenge or

follow-up, an attacker cannot predict the response.

A concrete example of the use of lightweight

authentication is given below:

• The Challenge: n = 7

• The sensor calculates 3*7 + 1 = 22

• The broker checks: if 22

corresponds to the expected term → connection

accepte.

This lightweight authentication method has

several advantages, such as being lightweight with

simple computation suitable for microcontrollers,

improved security preventing static authentication

and reducing the risk of simple replay. Quite

dynamic, each challenge is unique to each

connection and compatible with IoT, the minimal

implementation and can be integrated directly into

MQTT. But some limitations remain to be deplored,

such as those cited:

• If an attacker knows the logic and

captures multiple challenge-responses, he can

possibly predict what happens next.

• It does not replace TLS or strong

cryptographic mechanisms for sensitive data.

• Security depends on the random

generation and confidentiality of the initial seeds.

2. Experimental parameters

In this study, a hardware and software

environment is required for its implementation. The

hardware environment used is a computer with a

Windows or Linux operating system acting as a

broker. For the software environment, an MQTT

client with a Paho-MQTT library (Python), an

MQTT broker Mosquitto (open-source, lightweight)

and the Syracuse scripts implemented in Python [20]

[23]. The Python language was chosen for its

flexibility, efficiency and compatibility with

existing IoT libraries [23].

3. Experimental validation

The methodology will be validated by

software simulation in a classic MQTT environment

(Eclipse Mosquitto) [20]. Performance

measurements (latency, CPU overload, memory

consumption) are performed. Security tests against

targeted attacks (topic enumeration, payload

sniffing, identity theft) are applied to the simulation

[19] [23]. The results will allow comparing the

Syracuse approach with existing methods (TLS,

PSK, IDS) in terms of trade-off between security

and computational lightness (energy, resources)

[20].

IV. ALGORITHM OF OUR « MQTT-

SYRACUSE »

1. Basic algorithm

Our algorithm for lightweight MQTT

security using the Syracuse conjecture follows the

following procedure:

• The sensor generates

environmental data (temperature).

• The data is encrypted with the

Syracuse mask before sending to the broker.

• The message is posted on a topic

based on flight time.

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 61

• The broker regenerates the

Syracuse mask, decrypts the payload and stores the

clear data.

• Syracuse authentication is used

during connection to verify the identity of the

sensor.

2. Comparison of Syracuse conjecture

with a standard solution implemented

in MQTT

The standard MQTT protocol does not

integrate any security solution, the data circulates in

clear text on the network. It is necessary to apply a

minimum of security such as encryption,

authentication and use of secure ID. In the security

standards implemented in MQTT, TLS/SSL is used

for encryption, Login/Password for authentication

and random UUID (Universally Unique Identifier)

for generating dynamic IDs for topics. The Syracuse

conjecture integrates MQTT for security, XOR +

Collatz Mask is used for encryption, Collatz

Challenge-Response for authentication and

Syracuse Time of Flight for generating dynamic IDs

for topics.

3. Example code (Python + Paho-MQTT)

The Syracuse conjecture is integrated into

MQTT for lightweight security. To validate the

feasibility of the proposed approach, an

experimental implementation was performed using

the MQTT protocol and an integration of the

Syracuse suite for lightweight encryption and

authentication.

The implementation requires a hardware

and software environment. The hardware

environment uses a computer with a Windows or

Linux operating system acting as a broker.

For the software environment:

• MQTT client: Paho-MQTT

library (Python).

• MQTT Broker: Mosquitto (open-

source, lightweight).

• Syracuse scripts: implemented in

Python for mask generation and authentication

mechanism.

The implementation covers three (3) main

components.

• Lightweight encryption of

payloads: generation of a binary mask from the

Syracuse sequence and application of an XOR

between the mask and the sensor payload.

• Generate unique IDs for topics:

Use Syracuse's time of flight as a dynamic topic

suffix.

• Example: sensors/temp/27 for an

initial_n = 10 (time of flight = 27).

• Lightweight authentication:

Challenge-response where the broker sends n, and

the sensor responds with the next term in the

sequence.

Example code (Python):

import paho.mqtt.client as mqtt

Generation of the Syracuse mask

def syracuse_mask(n, length):

 mask = []

 for _ in range(length):

 mask.append(n % 2) # LSB

 n = n // 2 if n % 2 == 0 else 3 * n + 1

 return mask

XOR encryption function

def encrypt(payload, mask):

 return bytes([p ^ m for p, m in

zip(payload, mask)])

Initial settings

broker = "127.0.0.1"

n_shared = 42 # shared key

payload = b"25.6" # sensor data

Mask generation and encryption

mask = syracuse_mask(n_shared,

len(payload))

encrypted_payload = encrypt(payload,

mask)

MQTT Connection and Publication

client = mqtt.Client()

client.connect(broker, 1883, 60)

topic = f"sensors/syracuse/{len(mask)}"

client.publish(topic, encrypted_payload)

print(f" Message published on {topic} :

{encrypted_payload}")

Needs Standard

Solution

Syracuse

solution

Encryption TLS/SSL XOR + Collatz

Mask [19]

Authentication Login/Password Collatz

Challenge-

Response [23]

ID Generation Random UUIDs Flight time from

Syracuse [20] [23]

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 62

V. RESULT AND DISCUSSION

1. Result

The python code example has been

integrated connection time to the broker, the

percentage of CPU and memory used by Mosquitto

in order to obtain comparable data based on native

MQTT implementations, MQTT with

Username/Password and TLS, and finally MQTT

with the Syracuse conjuncture.

1.1. Test 1 native MQTT

Test 1 concerns the connection time to the

broker, the percentage of CPU and memory used by

native Mosquitto. A python script simulates an

MQTT client that establishes a connection with the

broker and returns the connection data.

import time

import psutil

import paho.mqtt.client as mqtt

=======================

MQTT SETTINGS

=======================

BROKER = "127.0.0.1"

PORT = 1883

TOPIC = "temperature"

PAYLOAD = "25.6°C"

=======================

CALLBACKS

=======================

def on_connect(client, userdata, flags, rc):

 if rc == 0:

 print("Connection successful ")

 else:

 print("Connection failure, code:", rc)

def on_disconnect(client, userdata, rc):

 print("Logged out with code:", rc)

=======================

START OF CPU/MEMORY

MONITORING

=======================

Search for the Mosquitto process

mosquitto_proc = None

for proc in psutil.process_iter(['name']):

 if proc.info['name'] and "mosquitto" in

proc.info['name'].lower():

 mosquitto_proc = proc

 break

if mosquitto_proc is None:

 raise Exception("Process mosquitto.exe

not found!")

=======================

MEASURING CONNECTION TIME +

CPU/MEMORY

=======================

client = mqtt.Client()

client.on_connect = on_connect

client.on_disconnect = on_disconnect

Measurements before connection

cpu_before =

mosquitto_proc.cpu_percent(interval=None)

mem_before =

mosquitto_proc.memory_percent()

start_time = time.time()

Login to the broker

client.connect(BROKER, PORT,

keepalive=60)

end_time = time.time()

latency_ms = (end_time - start_time) *

1000

Measurements after connection

cpu_after =

mosquitto_proc.cpu_percent(interval=0.5) #

average over 0.5s

mem_after =

mosquitto_proc.memory_percent()

print(f" Broker connection time:

{latency_ms:.2f} ms")

print(f"CPU used by Mosquitto :

{cpu_after:.2f} %")

print(f" Memory used by Mosquitto:

{mem_after:.2f} %")

=======================

PUBLISHING THE MESSAGE

=======================

client.loop_start() # needed for callbacks

result = client.publish(TOPIC,

PAYLOAD)

if result.rc ==

mqtt.MQTT_ERR_SUCCESS:

 print(f" Message published {TOPIC} :

{PAYLOAD}")

else:

 print("Failed to publish ")

time.sleep(1) # allow time to send

client.loop_stop()

client.disconnect()

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 63

The test is carried out five (5) times, in

order to have the average time and percentage. The

results are as follows:

1.2. Test 2: MQTT with

Username/Password, TLS and Self-

Signed Certificate

Test 2 concerns the connection time to the

broker, the percentage of CPU and memory used by

Mosquitto using password, TLS and a self-signed

certificate. A python script simulates an MQTT

client that establishes a connection with the secure

broker and returns the connection data.

import time

import psutil

import paho.mqtt.client as mqtt

=======================

MQTT SETTINGS

=======================

BROKER = "127.0.0.1"

PORT = 8883 # Port TLS

USERNAME = "victor"

PASSWORD = "root"

CA_CERT = r"C:\Program

Files\mosquitto\certs\mqtt_ca.crt" # Path to CA

certificate

payload = r"25.6°C"

topic = "temperature"

=======================

CALLBACKS MQTT

=======================

def on_connect(client, userdata, flags, rc):

 if rc == 0:

 print("Connection successful ")

 else:

 print("Connection failure, code:", rc)

def on_disconnect(client, userdata, rc):

 print("Logged out with code:", rc)

=======================

Search for the Mosquitto process

=======================

mosquitto_proc = None

for proc in psutil.process_iter(['name']):

 if proc.info['name'] and "mosquitto" in

proc.info['name'].lower():

 mosquitto_proc = proc

 break

if mosquitto_proc is None:

 raise Exception("Process mosquitto.exe

not found!")

=======================

MEASURING CONNECTION TIME +

CPU/MEMORY

=======================

client =

mqtt.Client(protocol=mqtt.MQTTv311)

client.username_pw_set(USERNAME,

PASSWORD)

client.tls_set(ca_certs=CA_CERT)

client.on_connect = on_connect

client.on_disconnect = on_disconnect

Start of measurement

start_time = time.time()

cpu_before =

mosquitto_proc.cpu_percent(interval=None)

mem_before =

mosquitto_proc.memory_percent()

client.connect(BROKER, PORT,

keepalive=60)

end_time = time.time()

cpu_after =

mosquitto_proc.cpu_percent(interval=0.5)

mem_after =

mosquitto_proc.memory_percent()

latency_ms = (end_time - start_time) *

1000

print(f"\n Secure connection time to the

broker: {latency_ms:.2f} ms")

print(f" CPU used by Mosquitto:

{cpu_after:.2f} %")

print(f" Memory used by Mosquitto:

{mem_after:.2f} %")

=======================

PUBLISHING THE MESSAGE

=======================

client.loop_start()

client.publish(topic, payload)

print(f"Message publié sur {topic} :

{payload}")

client.loop_stop()

client.disconnect()

The test is carried out five (5) times, in

 Trial 1 Trial2 Trial

3

Trial

4

Trial

5

Connection

time (ms)

3.43 6.70 7.66 7.78 8.96

CPU used (%) 0.00 0.00 0.00 0.00 0.00

Memory used 0.14 0.14 0.14 0.14 0.14

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 64

order to have the average time and percentage. The

results are as follows:

 Trial1 Trial2 Trial3 Trial4 Trial5

Connection

time (ms)

19.56 21.07 34.40 20.18 18.63

CPU used

(%)

0.00 0.00 0.00 0.00 0.00

Memory

used

0.16 0.16 0.16 0.16 0.16

1.3. Test 3: MQTT with the Syracuse

conjuncture

Test 3 is for broker connection time, CPU

and memory usage percentage by Mosquitto using

Syracuse, TLS and self-signed certificate. A python

script simulates an MQTT client that establishes a

connection with the secure broker and returns the

connection data.

import time

import psutil

import paho.mqtt.client as mqtt

=======================

FUNCTIONS

=======================

def syracuse_mask(n, length):

 """ Generates a binary mask from

Syracuse """

 mask = []

 for _ in range(length):

 mask.append(n % 2) # LSB

 n = n // 2 if n % 2 == 0 else 3 * n + 1

 return mask

def encrypt(payload, mask):

 """ XOR encryption of the payload with

the mask """

 return bytes([p ^ m for p, m in

zip(payload, mask)])

=======================

MQTT SETTINGS

=======================

BROKER = "127.0.0.1"

PORT = 1883

TOPIC = "temperature"

N_SHARED = 42

PAYLOAD = "25.6°C"

=======================

GENERATION OF THE ENCRYPTED

MESSAGE

=======================

payload_bytes = PAYLOAD.encode("utf-

8")

mask = syracuse_mask(N_SHARED,

len(payload_bytes))

encrypted_payload =

encrypt(payload_bytes, mask)

decrypted_payload =

encrypt(encrypted_payload, mask).decode("utf-8")

=======================

CALLBACKS MQTT

=======================

def on_connect(client, userdata, flags, rc):

 if rc == 0:

 print("Connection successful ",

end=" ")

 else:

 print("Connection failure, code:", rc)

=======================

MEASURE TIME + RESOURCES

=======================

mosquitto_proc = None

for proc in psutil.process_iter(attrs=["pid",

"name"]):

 if "mosquitto" in

proc.info["name"].lower():

 mosquitto_proc = proc

 break

if mosquitto_proc is None:

 print(" Unable to find the Mosquitto

process. Check that it is running.")

 exit(1)

cpu_before =

mosquitto_proc.cpu_percent(interval=None)

mem_before =

mosquitto_proc.memory_percent()

start_time = time.time()

client = mqtt.Client()

client.on_connect = on_connect

client.connect(BROKER, PORT,

keepalive=60)

end_time = time.time()

latency_ms = (end_time - start_time) *

1000

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 65

cpu_after =

mosquitto_proc.cpu_percent(interval=None)

mem_after =

mosquitto_proc.memory_percent()

print(f"\n Broker connection time:

{latency_ms:.2f} ms")

print(f" CPU used by Mosquitto:

{cpu_after:.2f} %")

print(f" Memory used by Mosquitto:

{mem_after:.2f} %")

=======================

PUBLISHING THE MESSAGE

=======================

client.loop_start()

result = client.publish(TOPIC,

encrypted_payload)

if result.rc ==

mqtt.MQTT_ERR_SUCCESS:

 print(f" Clear message:

{PAYLOAD}")

 print(f" Published encrypted

message sur {TOPIC} : {encrypted_payload}")

 print(f" Decrypted message

(control): {decrypted_payload}")

else:

 print(" Failed to publish ")

time.sleep(1)

client.loop_stop()

client.dionnect()

The test is carried out five (5) times, in

order to have the average time and percentage. The

results are as follows:

 Trial1 Trial2 Trial3 Trial4 Trial5

Connection

time (ms)

14.79 11.95 14.07 12.56 13.89

CPU used

(%)

0.00 0.00 0.00 0.00 0.00

Memory

used

0.14 0.14 0.14 0.14 0.14

1.4. Comparative balance sheet

The analysis of the three (3) tests reveals

that the resource consumption data of native MQTT

and MQTT with the Syracuse situation are much

closer than that of MQTT using passwords and TLS.

The percentage of CPU used by the three (3) tests is

zero, that is to say 0.00%.

2. Discussion

After following the experimental

implementation procedure, the following

experimental results were obtained:

• Encryption/decryption is

immediate,

• Memory consumption is

negligible (a few bytes for the mask),

• Challenge-response

authentication works correctly without network

overhead,

 • The system remains compatible

with a standard MQTT broker, without protocol

modifications.

The experimental implementation carried

out with the integration of the Syracuse conjecture

in MQTT made it possible to highlight the

contributions, but also the limits, of this approach.

 Computational performance:

• The operations related to the

Syracuse sequence (division by 2 or 3n+1

calculation) are very light, even for

microcontrollers,

• XOR encryption/decryption is

near-instantaneous (< 1 ms for a 10-byte payload),

• Memory consumption remains

negligible, because the mask is generated in real

time without massive storage.

This makes the approach suitable for

resource-constrained environments.

 Energy consumption:

• Unlike TLS/SSL, which requires

heavy cryptographic calculations (RSA, AES, key

negotiation), the Syracuse approach consumes little

energy,

• Les mesures montrent une

réduction significative du temps processeur utilisé,

 Native

MQTT

Secure

MQTT

MQTT

with

Syracuse

Average connection

time (ms)

10.675 26.515 13.37

Average CPU used

(%)

0.00 0.00 0 .00

Average memory

used

0.14 0.16 0.14

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 66

donc une meilleure autonomie énergétique des

capteurs.

Robustness and security:

• Lightweight encryption: prevents

trivial interception of messages, but remains

vulnerable to attack if the seed n_initial is

discovered,

• Challenge-response

authentication: improves protection against

unauthorized connections, but is not resilient to

prolonged observation attacks (replay or sequence

learning).

• Dynamic topics: using Syracuse

flight time as an identifier prevents simple topic

enumeration by an attacker, but does not provide a

strong guarantee of anonymization.

The approach is effective for obfuscation

and basic security, but does not replace TLS or AES

for critical data (e-health, financial transactions).

 Compatibility and integration: The approach is

fully compatible with standard MQTT, as it

relies solely on the transformation of payloads

and topics. No changes are required on the

Mosquitto broker side, the Syracuse logic is

integrated only in the client and receiver. This

allows for gradual deployment without

disrupting existing infrastructures.

 Comparison with standard mechanisms:

This assessment highlights that integrating

Syracuse into MQTT is a pragmatic compromise. It

is not a robust encryption solution, but an additional

layer of obfuscation and lightweight authentication.

It is ideal for scenarios with low-criticality data

(weather, environmental sensors). However, it can

be used in addition to standard protocols (TLS,

AES) to enhance the diversity of security

mechanisms and complicate the work of an attacker.

VI. CONCLUSION ET PERSPECTIVES

In this paper, we explored a novel approach

to enhance the security of the MQTT protocol in

constrained IoT environments, by exploiting the

deterministic but unpredictable properties of the

Syracuse suite. The proposed methodology covers

three main axes:

• The generation of dynamic

identifiers for topics, reducing the risks of

enumeration and collisions, while remaining

compatible with the publication/subscription logic

of MQTT,

• Lightweight encryption of

payloads using binary masks derived from Syracuse,

offering minimal confidentiality adapted to the

CPU, memory and energy constraints of connected

objects.

• Syracuse-based challenge-

response authentication, introducing a dynamic and

renewable mechanism, avoiding the systematic use

of full TLS or heavy certificates.

This approach has several advantages:

simplicity of implementation on microcontrollers,

low computational overhead and significant

improvement in the security of MQTT flows against

passive and active attacks (topic enumeration,

sniffing, spoofing, replay).

The perspectives offered by this study are

numerous:

• Integration with other lightweight

cryptographic primitives to enhance resistance to

cryptanalytic attacks,

• Evaluation on larger and more

heterogeneous IoT networks, with multi-broker and

multi-device scenarios,

• Formal security analysis and

quantification of the effective entropy generated by

Syracuse iterations.

In conclusion, the use of deterministic

recursive suites such as Syracuse constitutes a

promising avenue for reconciling lightness and

security in MQTT-based IoT systems, offering an

interesting compromise between performance and

protection of sensitive data.

Criteria TLS/SSL

(standard)

Syracuse (proposed)

Security Strong (AES,

RSA)

Low to medium

(simple XOR)

Energy

consumption

High Very low

Complexity High (use of

libraries)

Very low (simple

operations)

IoT

Compatibility

Average Excellent (Limited

MCUs/

Microcontroller

Units)

Recommended

use

Critical data Non-sensitive data /

prototyping

International Journal of Modern Research in Engineering and Technology (IJMRET)

www.ijmret.org Volume 10 Issue 10 ǁ October 2025.

w w w . i j m r e t . o r g I S S N : 2 4 5 6 - 5 6 2 8 Page 67

REFERENCES

Journal Papers:

[1] SAHMI I. Amélioration de la sécurité des

Objets Connectés (IoT) utilisant le protocole

MQTT dans le domaine de la E-santé. Toubkal

– IMIST (2022).

[2] THIANDOUM A. (2024) L’intelligence

artificielle pour la détection d’intrusions dans

l’Internet des Objets : le cas du Protocole

MQTT. Université Assane Seck de Ziguinchor

(2024).

[3] LAAROUSSI Z., NOVO O. (2021)

Performance Analysis of the Security

Communication in CoAP and MQTT. IEEE

CCNC 2021.

[4] AL-OTAIBI N. S., SAYED AHMED H. I.,

KAMEL S. O. M., EL-KABBANY G. F.

Secure Enhancement for MQTT Protocol

Using Distributed Machine Learning

Framework. Sensors, 24(5):1638 (2024).

[5] HUSNAIN M., HAYAT K., CAMBIASO E.,

FAYYAZ U. U., MONGELLI M., AKRAM

H., ABBAS S. G., SHAH G. A. Preventing

MQTT Vulnerabilities Using IoT-Enabled

Intrusion Detection System. Sensors,

22(2):567. (2022)

[6] ALLOUCHE J.-P. Sur la conjecture de

“Syracuse-Kakutani-Collatz”. Séminaire de

Théorie des Nombres de Bordeaux, vol. 8

(1978-1979), pp. 1–16.

[7] IDOWU M. A., A novel theoretical framework

formulated for information discovery from

number system and Collatz conjecture data.

Procedia Computer Science, vol. 61, pp. 105–

111, 2015.

[8] ANDALORO P. J., The 3x + 1 problem and

directed graphs. Fibonacci Quarterly, pp. 43–

54, 2000.

[9] LAGARIAS J. C., The 3x + 1 problem and its

generalizations. The American Mathematical

Monthly, vol. 92, no. 1, pp. 3–23, 1985.

[10] KHELILI F. K., BENCHOULA R.,

HANACHI N. E. Étude comparative de

protocoles de communication dans l'IOT.

UNIVERSITY OF KASDI MERBAH

OUARGLA. 2020

[11] Dinculeană D., Cheng X. Vulnerabilities and

limitations of MQTT protocol used between

IoT devices. Applied Sciences, 9(5), 848. 2019

[12] Nebbione G., Calzarossa M. C. Security of IoT

Application Layer Protocols: Challenges and

Findings. Future Internet, 12(3), 55. 2020.

[13] V Seoane, Carlos García-Rubio, F Almenares,

C Campo. (3 août 2021). Performance

evaluation of CoAP and MQTT with security

support for IoT environments. Carlos III de

Madrid, Av. de la Universidad, 30, Leganés

(Madrid), Espagne. 2021.

[14] Shahwan, A., Mohammed Z., Smith, B. K. (3

janvier 2025). Enhancing IoT communication

security: Analysis and mitigation of

vulnerabilities in MQTT, CoAP, and XMPP

protocols. Authorea.2025.

[15] SEGARRA C., DELGADO G. R.,

SCHIAVONI V. MQT-TZ: Hardening IoT

Brokers Using ARM TrustZone. 2022

[16] HANIF A., ILYAS M. (2) Effective Feature

Engineering pour MQTT Security. Sensors,

24(6) :1782. 2024.

[17] Di Paolo E., Bassetti E., Spognardi A. Security

assessment of common open source MQTT

brokers and clients. In Proceedings of the

Italian Conference on Cybersecurity (ITASEC

2023).

[18] TOÉ É. Renforcement de la cyber-résilience

des brokers MQTT contre les attaques DoS et

les défaillances grâce à une architecture

décentralisée basée sur la blockchain et

smartcontrat. Université du Québec à

Chicoutimi. 2024.

[19] Buccafurri F., De Angelis V., Lazzaro S.,

Vangala A. MQTT‑E: E2E encryption in

MQTT via proxy re‑encryption avoiding

broker overloading. Ad Hoc Networks, 176,

Article 103878. 2025.

[20] De Rango F., Spina M. G., Iera A.

DLST‑MQTT : Dynamic and lightweight

security over topics MQTT. Future Generation

Computer Systems, 166, Article 107625. 2025

[21] Alencar R. C., Fernandes B. J. T.,

Lima P. H. E. S., Silva C. M. R. da. AI

techniques for automated penetration testing in

MQTT networks. International Journal of

Computers and Applications, 47(1), 1–16.

2024.

[22] Swain M., Tripathi N., Sethi K. Identifying

communication sequence anomalies to detect

DoS attacks against MQTT. Computers &

Security, 105, Article 104526. 2025.

[23] Rodríguez‑Muñoz J. D., Tlelo‑Cuautle E., de

la Fraga L. G. Chaos‑based authentication of

encrypted images under MQTT for IoT

protocol. Integration, 102(4), Article 102378.

2025.

[24] HADEMINE A. V. E., Démonstration de la

conjecture de Syracuse. Nantes Univ – UFR

ST – Nantes Université – UFR des Sciences et

des Techniques, 2024.

