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ABSTRACT: Ensuring the safety and resilience of fly-by-wire (FBW) systems is crucial for modern aircraft, yet 

traditional methods like Fault Tree Analysis and Markov modeling face scalability and adaptability limitations. 

This paper introduces a hybrid model-based safety analysis framework combining fault injection, Monte Carlo 

simulation, and recursive state traversal in Simulink to address these challenges. Seven representative failure 

modes are injected to emulate realistic faults, Monte Carlo simulations quantify unsafe condition probabilities, 

and recursive traversal identifies critical fault interactions via Minimal Cut Sets. A lateral-directional FBW case 

study demonstrates probabilistic safety metrics, diagnostic insights, and compliance with certification thresholds. 

The framework enhances scalability, automation, and design consistency, offering a unified methodology for 

certification support, iterative design evaluation, and resilience analysis, with potential applicability to future 

cyber-physical aerospace systems. 
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I.          INTRODUCTION 

The safety and reliability of airborne 

systems, particularly fly-by-wire (FBW) flight 

control architectures, are essential to the 

certification and operational integrity of modern 

aircraft. Governed by rigorous standards such as 

14CFR/CS 25.1309, FBW systems eliminate 

mechanical linkages in favor of electronic signal 

transmission and computer-based control laws. 

While this reduces aircraft weight and increases 

efficiency, it introduces new failure modes that may 

impact stability and controllability. 

Traditional safety assessment tools such as 

Fault Tree Analysis (FTA), Markov process 

modeling, and Failure Modes and Effects Analysis 

(FMEA) have long supported certification efforts by 

offering structured methods to evaluate fault 

propagation and state transition risks [1]. However, 

these methods often rely on informal or static system 

models, requiring manual construction and expert 

judgment. This makes them time-intensive, difficult 

to update, and prone to inconsistencies during 

complex system evaluations [2]. 

To address these limitations, the field has 

increasingly embraced Model-Based Safety 

Analysis (MBSA) techniques, particularly those 

implemented in Simulink. MBSA enables safety 

evaluations to be directly linked to executable 

system models, allowing for integrated design and 

verification processes [3]. Fault injection techniques 

within this framework enable engineers to simulate 

various failure modes—such as stuck actuators or 

biased sensors—and observe their effects on system 

performance in real-time [4], [5]. This integration 

enhances traceability and supports automated, 

design-consistent assessments. 

Among MBSA techniques, two primary 

streams have emerged. The first employs Monte 

Carlo simulation to conduct probabilistic safety 

assessments by injecting faults across thousands of 

randomized trials. This allows for statistical 

evaluation of failure rates and fitting to known 
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distributions such as Weibull or Lognormal [6], [7]. 

The second stream focuses on recursive state 

traversal to generate Minimal Cut Sets (MCSs)—the 

smallest fault combinations that can result in 

system-level hazards—providing diagnostic insight 

but lacking probabilistic quantification [3]. While 

each offers distinct strengths, Monte Carlo lacks 

root cause visibility, and MCS approaches lack 

probabilistic quantification. Table 1 summarizes 

these differences. 

Recent research suggests that combining 

these complementary methods enhances both 

diagnostic depth and probabilistic rigor. 

Frameworks that integrate Monte Carlo simulation 

with state-space exploration offer richer insight into 

both the likelihood and causes of unsafe states [8]. 

Such synergy also improves scalability, allowing for 

early validation and updates aligned with design 

changes. 

This paper proposes a hybrid model-based 

safety and resilience analysis framework that unifies 

Monte Carlo simulation and recursive state traversal 

into a single, Simulink-driven process. The 

framework enables: 

1) Quantitative safety assessment through 

Monte Carlo-based estimation of unsafe condition 

probabilities; 

2) Qualitative diagnostics via state 

traversal with reduction techniques to identify 

critical MCSs. 

The rest of the paper is structured as 

follows. Section 2 outlines the methodology and 

system modeling. Section 3 presents the 

implementation of fault injection and simulation. In 

section 4, a lateral-directional flight control system 

is used as a case study. Section 5 concludes with 

implications for certification and future work. 

 

II.         METHODOLOGY 

The hybrid workflow starts with a 

Simulink-based nominal model of the fly-by-wire 

(FBW) control system, Fig.1 illustrating the 

system’s dynamic behavior under normal 

conditions. A dedicated fault injection module 

introduces seven key failure modes—omission, 

random, stuck, delayed, trailing, gain change, and 

biased—into system components such as primary 

flight computers, actuators, and sensors. The faulted 

model supports two complementary analysis paths. 

The first is the probabilistic path, where Monte 

Carlo simulations use randomly generated failure 

times to perform repeated trials; system responses 

are monitored until safety thresholds are crossed, 

and the resulting time-to-unsafe-condition data are 

fitted to Weibull or lognormal distributions to 

estimate the failure probability per flight hour. The 

second is the diagnostic path, where a recursive state 

traversal algorithm systematically evaluates failure 

combinations, applying state-space reduction to 

identify minimal cut sets (MCSs)—the smallest sets 

of component failures that lead to unsafe states. 

Together, these two paths offer both quantitative 

reliability metrics and qualitative diagnostic 

insights, enabling a thorough safety and resilience 

assessment of the FBW system. This integration 

ensures the framework can cover both fault causality 

and risk impact in a unified workflow. 

 
Fig. 1. Central Simulink model feeding two paths 

2.1 System Modeling via Simulink 

 The lateral-directional fly-by-wire (FBW) 

system integrates Primary Flight Computers (PFCs), 

dual-redundant actuators, triple modular redundant 

(TMR) sensors and inertial measurement units 

(IMUs), and control surfaces (ailerons and rudder) 

to ensure stability and fault tolerance. The PFCs, 

each with command and monitor channels, process 

pilot inputs and sensor data to command actuators 

while cross-verifying outputs for safety [9], [10]. 

Redundant actuators and TMR sensor architectures, 

supported by 2-out-of-3 voters, allow continued 

operation despite single failures. While this 

redundancy enhances resilience, it also introduces 

complex failure interactions, requiring model-based 

safety analysis (MBSA) with Simulink-based 

dynamic modeling, fault injection, Monte Carlo 

simulation, and state traversal to identify minimal 

cut sets (MCSs) and evaluate unsafe condition 
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probabilities [11], [12]. Figure 2 shows the 

architecture of the FBW system.  

The roll control law governing the lateral-

directional fly-by-wire (FBW) system, as 

implemented in the Primary Flight Computers 

(PFCs), integrates pilot inputs, sensor feedback, and 

actuator states to ensure coordinated roll response 

and overall stability. To achieve this, it is essential 

to define and implement a control law equation that 

effectively governs the system’s dynamic response 

to control inputs under various operational 

conditions, incorporating both feedback and 

feedforward methodologies to meet performance 

requirements and maintain compliance with safety 

thresholds. The control law formulation of PFC roll 

channel is defined by 

𝑅𝑟(𝑠) = 𝐾𝑟1∅𝑐(𝑠) + 𝐾𝑟2𝑅𝑏(𝑠) + 𝐾𝑟3

𝑠 + 𝑧𝑟

𝑠 + 𝑝𝑟

𝑃𝑏(𝑠) 

𝛿𝑎𝑟
∗

𝑙(𝑟)(𝑠) = (𝑃𝑟 +
𝐼𝑟

𝑠
+ 𝐷𝑟𝑠) (𝑅𝑟(𝑠) +

𝐾𝑟𝛿𝑎
𝑙(𝑟)(𝑠))            (1) 

Where ∅𝑐(∙)  is the pilot roll command 

input, 𝑅𝑏(∙) and 𝑃𝑏(∙) is the yaw rate signal and the 

roll rate signal, 𝛿𝑎
𝑙𝑟(∙) is the deflection angle of the 

left/right aileron, 𝛿𝑎𝑟
∗

𝑙𝑟 (∙) is the output response of the 

roll control law and 𝑅𝑟(∙)  is the intermediate roll 

rate command. And the values of the coefficients are 

given as 𝐾𝑟1 = 0.66, 𝐾𝑟2 = 0.145s, 𝐾𝑟3 = 2.16s, 𝐾𝑟  = 

1.33, 𝑍𝑟  = 11.1𝑠−1 , 𝑃𝑟  = 25𝑠−1 , 𝑃𝑟  = 0.45A, 𝐼𝑟  = 

6𝐴 𝑠⁄ , 𝐷𝑟  = 0.01As [11], [12]. 

 

 
Fig. 2. Fly-by-Wire system architecture [11]. 

The safety thresholds for the lateral-

directional fly-by-wire (FBW) flight control system 

are established as the maximum allowable 

deviations of key performance metrics from their 

nominal, failure-free responses, serving as critical 

benchmarks for assessing the system’s operational 

limits and ensuring its safety performance under 

both normal and fault conditions. The system is 

considered unsafe if any of these limits are 

exceeded:  

|𝑦𝑖(𝑡) − 𝑦𝑟𝑖(𝑡)| ≤ 𝑅𝑖,      𝑖 = 1,2,3,4    (2) 

 

where 𝑦𝑖(𝑡)  is the response value of the 𝑖 th 

performance metric, 𝑦𝑟𝑖(𝑡) is the reference value of 

the 𝑖th performance metric which is the response of 

the failure-free configuration, 𝑅𝑖 is the threshold of 

the 𝑖 th performance metric. And any deviation 

beyond these thresholds indicates the system has 

entered an unsafe condition. Specifically, 𝑦1(𝑡) =

∅(𝑡) is the Roll angle, 𝑦2(𝑡) = 𝛽(𝑡) is the Sideslip 

angle, 𝑦3(𝑡) = 𝑝𝑏(𝑡) is the Roll rate, and 𝑦4(𝑡) =

𝑟𝑏(𝑡) is the Yaw rate; 𝑅1 = 0.15rad, 𝑅2 = 0.15rad, 

𝑅3 = 0.45rad/s, 𝑅4 = 0.45rad/s. 

The Simulink model typically 

encompasses state-space representations, transfer 

functions, and dynamic blocks to simulate the 

behavior of the fly-by-wire control systems 

effectively.  

State space models are crucial as they allow 

for the representation of multiple inputs and outputs, 

thus facilitating the complexity of FBW systems that 

must respond dynamically to pilot commands and 

environmental conditions [11], [13]. In state-space 

representations, the system's dynamics are 

encapsulated in a set of first-order differential 

equations that describe the relationships between the 

system inputs, outputs, and internal states. 

Therefore, state-space function is expressed by: 

{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
         (3) 

where 𝑥(𝑡) is the vector of state variables, 

𝑢(𝑡)  is the vector of input variables, 𝑦(𝑡)  is the 

vector of output variables, A is the system matrix, B 

is the control matrix, C is the output matrix and D is 

the feedforward matrix. 

Transfer functions serve as an alternative 

mathematical representation of the system 

dynamics, particularly useful for analyzing the 

frequency response of the system. Transfer 

functions relate the output of the system to its input 

in the Laplace domain. They provide insights into 

system stability and performance under varying 

conditions, which is paramount for ensuring 
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compliance with airworthiness requirements for 

FBW systems [11], [16]. 

Dynamic blocks in Simulink help simulate 

various components of the FBW system, including 

actuators, sensors, and redundant components. 

These blocks can represent non-linear behaviors and 

the complex dynamics characteristic of real-world 

systems. Moreover, these dynamic elements can 

model failure scenarios, which are crucial for fault 

injection studies designed to evaluate the resilience 

of the system under various fault conditions [13]. 

2.2 Fault Injection Framework 

A fault injection framework systematically 

evaluates the safety and fault tolerance of systems 

by simulating component-level failures within a 

model-based environment. In safety-critical 

applications such as fly-by-wire (FBW) flight 

control systems, the framework enables the 

deliberate injection of representative fault modes—

such as omission, delay, random, stuck, trailing, 

gain change, and bias—into a validated nominal 

model. This allows for the analysis of system 

responses against predefined safety thresholds, 

aiding in the identification of unsafe states and the 

determination of minimal cut sets (MCSs) that 

highlight critical failure combinations. Ultimately, 

the framework offers a robust and automated 

method for assessing system resilience under fault 

conditions, playing a crucial role in the early-phase 

validation and certification of complex aerospace 

systems. The failure modes for FBW components 

are summarized in Table 1 below. 

 

Table 1. Failure Modes For FBW Components 

[11],[12] 

Compon

ent 

Failure 

mode 

 

Description 

Failure Rate 

 (1/h) 

PFC Omissi

on 

Rando

m 

 

Stuck 

 

Delaye

d 

 

Output is null 

Output changes 

unpredictable 

Output stuck at 

the last correct 

value 

Output is 

delayed for a 

certain time 

2 × 10−7 

 

1 × 10−7 

 

1 × 10−7 

 

1 × 10−7 

Actuator Omissi Output is null 1 × 10−6 

s on 

Stuck 

Output stuck at 

the last correct 

value 

 

1 × 10−6 

Sensors Omissi

on 

Gain 

Change 

 

Biased 

Output is null 

Output scaled by 

a factor 

Output scaled by 

a factor 

4 × 10−7 

 

3 × 10−7 

 

3 × 10−7 

Control 

Surfaces 

Stuck 

 

Trailin

g 

Output stuck at 

the last correct 

value 

Output is 

decided by the 

aero-dynamic 

 

1 × 10−8 

 

1 × 10−8 

Inertial 

Measure

ment 

Units 

(IMU) 

Omissi

on 

Gain 

Change 

 

Biased 

Output is null 

Output scaled by 

a factor 

Output scaled by 

a factor 

4 × 10−7 

 

3 × 10−7 

 

3 × 10−7 

 

               Fault Injection Structure in Simulink: A 

structured approach to fault injection in Simulink 

models involves the use of specialized blocks that 

can be inserted into the system model. These blocks 

are responsible for introducing predefined fault 

patterns at specific points in the simulation.  

Figure 3 illustrates the internal structure of a 

Simulink-based fault injector used for model-based 

safety analysis of a Fly-By-Wire (FBW) system. 

The injector dynamically selects between a 

failure-free output and multiple predefined fault 

modes using a control signal. Each fault mode is 

modeled as a separate path within a Variant 

Subsystem, allowing seamless switching during 

simulation [11], [18]. This enables automated fault 

injection driven by scenario logic or Monte Carlo 

sampling, supporting both structural (minimal cut 

set) and probabilistic (failure likelihood) safety 

evaluations without altering the core system model. 

The flexibility offered by these blocks allows 

engineers to configure and control the exact 

conditions under which faults are introduced, 

facilitating extensive testing without altering the 

core model structure. 

The Monitoring Block compares the output 

of the potentially faulty component against the 

corresponding reference signal from the failure-free 
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configuration. If the difference between the two 

exceeds pre-defined safety thresholds (e.g., in roll 

angle or yaw rate), the system is flagged as being in 

an unsafe condition, and the simulation may be 

terminated early to capture time-to-failure statistics. 

 
Fig. 3. Fault injection and monitoring flow for 

model-based safety analysis 

2.3 Probabilistic Analysis 

In the Monte Carlo simulation process, the 

failure time of each component failure mode is 

treated as a random variable following an 

exponential distribution. This is a standard approach 

in reliability analysis due to the distribution’s 

memoryless property. The time to failure is sampled 

using the inverse transform method: 

𝑡 = −
1

𝜆
ln(1 − 𝑟)                    (4) 

where λ is the constant failure rate and 

𝑟~𝑈(0,1)  is a uniformly distributed random 

variable. This sampling technique enables the 

generation of realistic failure times for each failure 

mode. During each simulation run, failure times for 

all relevant modes are sampled and ordered. Failures 

are sequentially injected into the system model 

according to their occurrence time. The system 

response is monitored after each injection, and the 

simulation is terminated when an unsafe condition is 

detected. Repeating this process over many 

iterations yields a set of time-to-unsafe-condition 

samples, which are used to estimate the probability 

distribution of failure and evaluate system safety and 

resilience. 

In each Monte Carlo simulation trial, the 

following procedure is executed to estimate the 

probability of unsafe conditions in the Fly-By-Wire 

(FBW) system: 

1) Sampling Failure Times: For each failure mode 

𝑗 of component 𝑖, a failure time 𝑡𝑖𝑗 is sampled 

from an exponential distribution with failure 

rate 𝜆𝑖𝑗, using the inverse transform method: 

𝑡𝑖𝑗 = −
1

λ𝑖𝑗
ln(1 − 𝑟𝑖𝑗),   𝑟𝑖𝑗~𝑈(0,1)      (5) 

This step generates a complete set of failure 

times for all component-mode pairs in the system. 

2) Determining Failure Sequence: the set of all 

sampled failure times {𝑡𝑖𝑗}  is sorted in 

ascending order to form a sequence of events: 

𝑻 =  {(𝑖1, 𝑗1, 𝑡1), (𝑖2, 𝑗2, 𝑡2), . . , (𝑖𝑘 , 𝑗𝑘, 𝑡𝑘)}, 

𝑡1 < 𝑡2 <. . . < 𝑡𝑘                         (6) 

Each tuple in 𝑻 identifies the component 

𝑖𝑘, its failure mode 𝑗𝑘, and the corresponding time of 

occurrence 𝑡𝑘. 

3) Sequential Fault Injection: Failures are injected 

into the system sequentially according to the 

ordered list 𝑇. After each fault injection at time 

𝑡𝑘 , the system model (e.g., Simulink) is 

executed forward to observe the resulting 

behavior. The system’s performance metrics 

𝑦(𝑡) (e.g., roll rate, yaw rate) are continuously 

monitored and compared against defined safety 

thresholds 𝑅𝑖: 

|𝑦𝑖(𝑡) − 𝑦𝑖,𝑟𝑒𝑓(𝑡)| > 𝑅𝑖     

𝑈𝑛𝑠𝑎𝑓𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛    (7) 

Where, 𝑦𝑖,𝑟𝑒𝑓(𝑡)  denotes the failure-free 

(nominal) response. 

4) Termination and Time Recording: The 

simulation terminates at the first time 𝑡𝑓 where 

an unsafe condition is detected. This value 𝑡𝑓 is 

recorded as the time to an unsafe condition for 

that trial: 

Tfail
(k)

= tf                            (8) 

If no unsafe condition occurs within the 

mission time, 𝑇𝑓𝑎𝑖𝑙
(𝑘)

 may be right-censored. 

By repeating this process over 𝑁  trials, a 

sample set {𝑇𝑓𝑎𝑖𝑙
1 , . . . . . , 𝑇𝑓𝑎𝑖𝑙

(𝑁)
} is obtained.  

The resulting empirical distribution of 

time-to-unsafe-condition is used to fit a Weibull 

distribution: 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 (− (
𝑡

𝛼
)

𝛽

)              (9) 
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where 𝛼 is the scale parameter and β the 

shape parameter estimated via maximum likelihood 

estimation (MLE) or regression fitting. 

The fitted distribution enables the 

calculation of the cumulative probability of an 

unsafe condition up to time 𝑡 , the instantaneous 

failure rate (hazard function), and the mean time to 

failure or unsafe condition. 

For systems with periodic inspection or 

maintenance intervals (e.g., every 500 hours), the 

probability of experiencing an unsafe condition 

within that interval is directly computed from the 

fitted cumulative distribution: 

𝑃𝑢𝑛𝑠𝑎𝑓𝑒(𝑡 = 500) = 𝐹(500)               (10) 

This probabilistic output provides a 

quantitative basis for safety certification and 

resilience evaluation. 

2.4 Diagnostic Analysis 

To systematically identify all potential 

failure combinations that may result in unsafe 

system conditions, a recursive state traversal 

algorithm is employed. This approach enables the 

enumeration of failure combinations across multiple 

components and failure modes, forming the basis for 

minimal cut set (MCS) extraction. 

2.4.1 Problem formulation 

Let the system consist of components, 

where each component 𝑖 ∈ {1, 2, . . . , 𝑚}  has 𝑛𝑖 

distinct failure modes. Define a failure configuration 

vector: 

𝐶 = [𝑐1, 𝑐2, . . . , 𝑐3] ∈ 𝑍 ≥0
𝑚                   (11) 

Where each element 𝑐𝑖 is defined as:  

𝑐𝑖

= {
0, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑎𝑖𝑙𝑒𝑑

𝑗, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑓𝑎𝑖𝑙𝑠 𝑚𝑜𝑑𝑒 𝑗,      1 ≤ 𝑗 ≤ 𝑛𝑖    
 

The number of nonzero elements in C 

determines the order q of the failure combination, 

i.e., the number of components failed in that 

configuration. 

2.4.2 Recursive Traversal Algorithm 

To construct all possible failure 

combinations of order q, the algorithm proceeds 

recursively: let 𝑞 ∈ {1,2, . . . , 𝑚}  be the desired 

failure combination order and initialize the recursion 

depth 𝑘 = 1  and component index 𝑖𝑘 = 1. 

Steps: 

1) At recursion depth k, select the k-th failed 

component 𝑖𝑘 ∈ {𝑖𝑘−1 + 1, . . . , 𝑚}  and 

assign a failure mode 𝑐𝑖𝑘
= 𝑗  where 𝑗 ∈

{1, . . . , 𝑛𝑖𝑘
}. 

2) If 𝑘 = 𝑞 , store the resulting failure 

configuration C. 

3) If 𝑘 < 𝑞, increment k and continue step (1) 

with 𝑖𝑘 = 𝑖𝑘−1 + 1. 

4) After exploring all 𝑗 ∈ {1, . . . , 𝑛𝑖𝑘
} for the 

current 𝑖𝑘 , backtrack; Reset 𝑐𝑖𝑘
= 0  and 

decrement k, and continue to the next 

unvisited component. 

2.4.3 State Space and Reduction 

The total number of configurations without 

optimization is: 

𝑁 = ∑ (𝑚
𝑞

) ∏ 𝑛𝑖
𝑞
𝑖=1

𝑚
𝑞=1                  (12) 

To reduce computational cost, the 

following state space reduction rules may be 

applied: 

1) Subset Elimination: If a failure 

configuration is a superset of a known 

minimal cut set, it is discarded. 

2) Redundancy Elimination: Failure 

combinations involving redundant 

components that do not contribute to unsafe 

outcomes are omitted (e.g., in k-out-of-n 

architectures). 

3) Equivalence Collapsing: Symmetric or 

equivalent failures in replicated subsystems 

are counted only once. 

2.4.4 Minimal Cut Set Identification 

Figure 4 shows the flowchart of recursive 

traversal process of MCS identification for each 

generated configuration C The extended system 

model is simulated with the corresponding failure 

modes injected. If the system enters an unsafe 

condition (as defined by threshold violation in 

monitored outputs), C is recorded as a cut set. 

A minimal cut set (MCS) is defined as a cut 

set for which no proper subset is itself a cut set. After 

all simulations: 

1) All recorded cut sets are analyzed, 

2) Supersets of other cut sets are removed, 
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3) The remaining configurations form the final 

set of MCSs. 

Fig. 4. Flowchart of Recursive Traversal Process for 

Minimal Cut Sets (MCS) 

 

2.4.5 Resulting Utility 

The identified MCSs are used in both 

qualitative safety assessments (e.g., identifying 

critical failure scenarios) and quantitative analysis, 

such as computing system-level failure probability: 

𝑃𝑢𝑛𝑠𝑎𝑓𝑒 = ∑ 𝑃(𝐶)𝐶∈𝑀𝐶𝑆           (13) 

assuming independence among failure events. 

2.5 Integration of both Analysis 

To integrate Monte Carlo simulation 

results with Minimal Cut Set (MCS) analysis, we 

combine probabilistic estimation of failure 

occurrence (via simulation) with structural insights 

into failure causality (via state traversal). This fusion 

provides both a quantitative measure of unsafe state 

probability and qualitative diagnostic insights into 

which components or combinations critically affect 

system resilience. 

2.5.1 Probability of Unsafe Condition Over 

Time 

The cumulative probability of entering an 

unsafe condition by time is estimated empirically 

from or by fitting a Weibull distribution: 

𝑃𝑢𝑛𝑠𝑎𝑓𝑒(𝑡) =  𝐹̂(𝑡) = 1 − 𝑒𝑥𝑝 (− (
𝑡

𝛼
)

𝛽

) 

(14) 

where and are the scale and shape 

parameters estimated from simulation data via 

maximum likelihood estimation. 

This function gives the system-level 

likelihood of experiencing a critical failure (crossing 

the unsafe threshold) by time t, incorporating the 

probabilistic timing of component failures. 

2.5.2 Diagnostic Risk Attribution via MCSs 

Each minimal cut set represents a 

structurally critical combination of component 

failures. Assuming independence among failure 

modes, the probability of each MCS over a mission 

time is: 

𝑃(𝐶𝑘; 𝑡) = ∏ 𝑃𝑖,𝑐𝑖(𝑡)𝑖∈𝑠𝑢𝑝𝑝(𝐶𝑘)           (15) 

where: 

𝑠𝑢𝑝𝑝(𝐶𝑘) = {𝑖: 𝑐𝑖 ≠ 0}  is the support 

(indices of failed components), 

𝑐𝑖  is the specific failure mode index for 

component i, 

Pi,ci
(t) = 1 − e−λi,ci

t
 is the cumulative 

failure probability for the failure mode 𝑐𝑖  of 

component i. 

The total probability of unsafe conditions 

via the MCS approximation is: 

𝑃𝑀𝐶𝑆(𝑡) = ∑ 𝑃(𝐶𝑘; 𝑡)𝐶𝑘∈𝑀           (16) 

To correct for overlapping (non-disjoint) 

events, inclusion-exclusion or Monte Carlo-based 

aggregation is preferred. 

1) Combined Diagnostic and Probabilistic 

Interpretation 

By ranking MCSs 𝐶𝑘  based on 𝑃(𝐶𝑘; 𝑡) , 

We identify high-contributing component 

combinations. For example: 

If 𝑃(𝐶3; 500ℎ) = 1.3 × 10−5  contributes 

45% of 𝑃𝑀𝐶𝑆(500), then 𝐶3  dominates system risk. 

Components appearing most frequently 

across high-probability MCSs are diagnostically 

critical. 

Monte Carlo simulation provides temporal 

failure dynamics, while MCSs offer structural 

traceability. Their integration enables both risk 
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quantification and root-cause prioritization, 

essential for certification and design mitigation. 

 

III. CASE STUDY AND RESULTS 

The study centers on the lateral-directional 

fly-by-wire (FBW) control system, a vital 

technology in modern aircraft that replaces 

mechanical linkages with electronically managed 

flight controls. By integrating software and 

hardware to interpret pilot commands and manage 

aircraft dynamics, the FBW system improves 

precision, responsiveness, and operational safety. It 

forms a key layer in maintaining flight stability, 

especially in the presence of variable aerodynamic 

conditions. 

The FBW system architecture is composed 

of four primary elements: Primary Flight Control 

Computers (PFCs), which process pilot inputs and 

execute control algorithms; actuators like the Left 

and Right Aileron Actuators (LAA, RAA) and 

rudder actuators, which physically adjust the 

aircraft's orientation; Triple Modular Redundant 

(TMR) sensors, which ensure reliability by detecting 

discrepancies across redundant sensor inputs; and 

the control surfaces themselves—ailerons and 

rudders—which directly influence the aircraft’s roll 

and yaw. 

Figure 5 shows the lateral-directional FBW 

system whose components work cohesively to 

provide a resilient and fault-tolerant system. The 

architecture is deliberately designed to handle 

individual component failures while maintaining 

safe flight performance. The study will use an 

architecture diagram to illustrate these 

interconnections and demonstrate how fault 

injection and Monte Carlo simulation techniques are 

used to evaluate system safety and identify 

vulnerabilities. Each architectural element plays a 

foundational role in supporting the system’s 

reliability and forms the basis for further safety and 

resilience analysis. 

Fig.5. The architecture of the lateral flight control 

[12] 

3.1 Monte Carlo Simulation Results 

A Monte Carlo simulation is applied to 

capture the probabilistic nature of fault occurrence 

over time. Failure times for each component-mode 

pair are randomly sampled from exponential 

distributions using known or assumed failure rates. 

TPerformed by injecting random failure 

times into critical components. A total of N = 2000 

simulations were executed. Figure 6 shows the 

histogram of time-to-unsafe-condition overlaid with 

a Weibull distribution fit, with shape parameter β = 

1.73 and scale parameter α = 910 hours.  

Fig. 6. Histogram of time-to-unsafe-condition fitted 

with Weibull distribution. The distribution 

demonstrates the temporal risk profile and helps 

estimate failure probabilities for certification. 

Based on this fit, the probability of an 

unsafe condition occurring within a single flight 

hour was calculated as P₁ₕ = 3.1 × 10⁻⁶, and the 

probability of failure within a 500-hour maintenance 

interval was approximately 0.0015. These results 

demonstrate compliance with safety thresholds and 

confirm the reliability of the current FBW design 

under the modeled failure modes. 

3.2 State Traversal Results 

State traversal analysis revealed that 

certain combinations of faults were 

disproportionately critical. Using a recursive 

traversal algorithm, the analysis identified minimal 

fault combinations responsible for system failure. 

From an initial set of 4000 possible combinations, 

state-space reduction techniques removed 65% of 

redundant or non-contributing states. For example, 

Gain Change in PFC1 combined with a Biased 

sensor in Sensor2 (Rank 1) consistently resulted in 

threshold violations. Similarly, simultaneous Stuck 

and Omission faults in the actuator and sensor 

pathways led to loss of lateral control. These 

Minimal Cut Sets (MCSs) represent the smallest 

fault sets capable of triggering system-level hazards 

and are invaluable for targeted mitigation, such as 

redundancy enhancement or real-time fault 

detection prioritization. Table 2 lists the top five 

Minimal Cut Sets (MCSs), ranked by likelihood and 
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criticality. This specific pair disrupts both control 

logic and feedback accuracy, making it particularly 

hazardous under dynamic flight conditions. 

 

Table 2. Top MCS risk Contributions 

MCS 

ID 

Compone

nts 

Failure 

Probability 

Contribut

ion (%) 

MCS

_1 

K5 1.30E-06 24.53 

MCS 

2 

L5 1.20E-06 22.64 

MCS 

3 

M5 1.10E-06 20.75 

MCS 

4 

A1+F4 9.00E-07 16.98 

MCS 

5 

H4+J4+R

A2 

8.00E-07 15.09 

 

A key strength of the hybrid method lies in 

its automation and seamless integration with the 

system's Simulink model. Fault propagation, 

threshold evaluation, and outcome classification are 

performed within the simulation loop, eliminating 

the need for manually constructed fault trees or 

Markov chains. Design changes can be immediately 

reflected by updating the Simulink model, enabling 

continuous safety assessment throughout the 

development lifecycle.  

3.3 Comparison to Traditional Methods 

In contrast to conventional methods like 

Fault Tree Analysis (FTA) and Markov modeling, 

which often suffer from scalability issues and static 

modeling limitations, which suffer from exponential 

state-space growth in redundant systems, the hybrid 

approach avoids combinatorial explosion. Table 3 

shows the comparative analysis of traditional, 

MBSA, and hybrid safety approaches. Recursive 

state traversal with pruning strategies reduced the 

number of evaluated fault cases by over 60%, 

offering significant computational savings while 

retaining coverage. Monte Carlo simulation 

complements this with probabilistic insight across a 

wide range of scenarios. 

3.4 Certification and Design Implications 

The dual output—quantitative reliability 

and qualitative diagnostic insight—directly supports 

safety certification processes (e.g., CS 25.1309 for 

transport aircraft). Certification engineers can trace 

risk contributors using MCSs and assess compliance 

with failure rate requirements. Table 3 Moreover, 

design teams benefit by identifying critical 

components and fault interactions early in 

development, enabling informed design trade-offs 

and test prioritization before physical prototyping. 

This framework can also be embedded into 

continuous development pipelines where each 

model update triggers automated safety evaluations. 

 

Table 3. Comparative analysis of traditional, 

MBSA, and hybrid safety approaches. 

Aspect Traditi

onal 

Metho

ds 

(FTA) 

Monte 

Carlo 

(MBS

A) 

State 

Traver

sal 

(MBSA

) 

Propo

sed 

Hybri

d 

(Mont

e 

Carlo 

+ 

Trave

rsal) 

Model 

type 

Integra

tion 

Manual

, 

abstract 

models 

Execut

able 

Simuli

nk 

model 

Executa

ble 

Simulin

k model 

Execu

table 

Simuli

nk 

model 

Probab

ility 

Estima

tion 

Yes 

(limite

d state-

space) 

Yes 

(statist

ical 

distrib

ution) 

No Yes 

Diagno

stic 

Insight 

(MCS) 

Partial 

(fault 

trees) 

No Yes 

(MCS 

identific

ation) 

Yes 

Scalabi

lity 

Poor 

(state 

explosi

on) 

High Mediu

m 

High 

(pruni

ng 

enable

d) 

Autom

ation 

Low 

(manua

l 

enumer

ation) 

Mediu

m 

Mediu

m 

High 

Design 

Consist

ency 

Low 

(model 

High High High 
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mismat

ch) 

Certifi

cation 

Releva

nce 

Modera

te 

High Modera

te 

High 

 

3.5 Extension to Resilience Evaluation 

While the current study emphasizes 

mechanical and random faults, the framework's 

modular design facilitates its extension to cyber-

physical threat analysis., The same framework is 

extensible to cyber-physical threats. For instance, 

sensor spoofing or actuator command injection can 

be modeled as biased or delayed faults. By injecting 

these artificial disturbances, developers can evaluate 

the system’s resilience against adversarial 

conditions, making this framework relevant for 

future autonomous and unmanned systems 

operating in contested environments. 

 

IV. DISCUSSION 

The hybrid framework is fully integrated 

with the Simulink system model, allowing automatic 

fault injection and output evaluation within the same 

simulation environment. Unlike traditional safety 

tools (e.g., FTA, Markov), which require manual 

modeling and static structures, this approach updates 

seamlessly when the system design evolves. Any 

change in the control logic, component behavior, or 

architecture is directly reflected in the safety 

analysis without rebuilding models from scratch.  

This automation significantly reduces 

human error, modeling effort, and update lag during 

iterative development. 

One of the key advantages of the hybrid 

method is its ability to provide both quantitative and 

qualitative results: 

1) Monte Carlo simulation estimates the 

probability distribution of unsafe conditions 

under randomized fault scenarios, offering 

time-to-failure statistics and compliance checks 

against thresholds. 

2) Recursive state traversal identifies Minimal Cut 

Sets (MCSs)—the smallest fault combinations 

that lead to hazards—offering actionable 

diagnostic insights.  

This dual-output capability allows system 

engineers and certifiers to not only assess how likely 

a failure is, but also which combinations of faults are 

most dangerous, supporting deeper root cause 

analysis and more focused mitigation strategies. 

Future research may incorporate human factors, 

operator response times, and delayed detection logic 

into the fault models for even greater fidelity. 

Traditional methods like Markov modeling 

and FTA become impractical in systems with high 

redundancy or complex interactions due to state-

space explosion. Modeling every possible fault 

combination or transition quickly becomes 

intractable. In contrast, the hybrid method uses 

dynamic simulation with state pruning, where only 

relevant paths are explored through traversal and 

non-minimal states are discarded. This enables 

analysis of large, realistic systems without 

overwhelming computational resources. 

The framework aligns closely with 

regulatory safety assessment requirements (e.g., CS 

25.1309) by providing both failure probability 

estimates and evidence of failure containment 

strategies. Because it’s directly based on the 

Simulink design model, it supports early-stage 

validation, enabling certification-driven feedback 

during the development phase. Designers can 

identify weak points early, reallocate redundancy, 

and refine control strategies before costly prototypes 

are built. 

Beyond mechanical or random faults, the 

same simulation infrastructure can model malicious 

or adversarial inputs—such as sensor spoofing, 

signal delays, or actuator command manipulation. 

By defining these attack modes as injected faults, the 

framework can assess the resilience of the control 

system under coordinated cyber-physical threats. 

This opens a pathway for future research in 

robustness and cybersecurity of autonomous or 

highly networked airborne systems. 

 

V.          CONCLUSION 

This paper presented a hybrid model-based 

safety and resilience analysis framework for fly-by-

wire (FBW) control systems, integrating Monte 

Carlo simulation and recursive state traversal within 

a Simulink environment. The approach enables 

dynamic fault injection, probabilistic failure 

estimation, and diagnostic insight—providing a 

more scalable and design-consistent alternative to 

traditional methods such as Fault Tree Analysis and 
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Markov modeling. 

The key contributions include: 

1) A Simulink-based fault injection architecture 

capable of modeling multiple failure modes, 

2) Probabilistic evaluation of system failure using 

Monte Carlo simulation and Weibull fitting, 

3) Diagnostic generation of Minimal Cut Sets 

(MCSs) via state traversal with pruning, 

4) A dual-output system that supports both 

certification requirements and early-stage 

design iteration. 

By combining quantitative safety metrics 

(e.g., probability of unsafe conditions) with 

qualitative diagnostics (e.g., MCSs), the framework 

supports a comprehensive assessment of FBW 

system reliability. It improves automation, avoids 

state explosion, and remains tightly integrated with 

evolving system models. 

Future work will explore the inclusion of 

dependent failure modes, scalability to larger and 

more complex avionics systems, and extension of 

the methodology for evaluating resilience against 

coordinated cyber-physical attacks. These 

advancements aim to further enhance the 

applicability of model-based safety analysis in next-

generation safety-critical aerospace platforms. 
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