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ABSTRACT: Ensuring the safety and resilience of fly-by-wire (FBW) systems is crucial for modern aircraft, yet
traditional methods like Fault Tree Analysis and Markov modeling face scalability and adaptability limitations.
This paper introduces a hybrid model-based safety analysis framework combining fault injection, Monte Carlo
simulation, and recursive state traversal in Simulink to address these challenges. Seven representative failure
modes are injected to emulate realistic faults, Monte Carlo simulations quantify unsafe condition probabilities,
and recursive traversal identifies critical fault interactions via Minimal Cut Sets. A lateral-directional FBW case
study demonstrates probabilistic safety metrics, diagnostic insights, and compliance with certification thresholds.
The framework enhances scalability, automation, and design consistency, offering a unified methodology for
certification support, iterative design evaluation, and resilience analysis, with potential applicability to future
cyber-physical aerospace systems.
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L. INTRODUCTION to update, and prone to inconsistencies during

The safety and reliability of airborne
systems, particularly fly-by-wire (FBW) flight
control architectures, are essential to the
certification and operational integrity of modern
aircraft. Governed by rigorous standards such as
14CFR/CS 25.1309, FBW systems eliminate
mechanical linkages in favor of electronic signal
transmission and computer-based control laws.
While this reduces aircraft weight and increases
efficiency, it introduces new failure modes that may
impact stability and controllability.

Traditional safety assessment tools such as
Fault Tree Analysis (FTA), Markov process
modeling, and Failure Modes and Effects Analysis
(FMEA) have long supported certification efforts by
offering structured methods to evaluate fault
propagation and state transition risks [1]. However,
these methods often rely on informal or static system
models, requiring manual construction and expert
judgment. This makes them time-intensive, difficult

www.ijmret.org

complex system evaluations [2].

To address these limitations, the field has
increasingly embraced Model-Based  Safety
Analysis (MBSA) techniques, particularly those
implemented in Simulink. MBSA enables safety
evaluations to be directly linked to executable
system models, allowing for integrated design and
verification processes [3]. Fault injection techniques
within this framework enable engineers to simulate
various failure modes—such as stuck actuators or
biased sensors—and observe their effects on system
performance in real-time [4], [5]. This integration
enhances traceability and supports automated,
design-consistent assessments.

Among MBSA techniques, two primary
streams have emerged. The first employs Monte
Carlo simulation to conduct probabilistic safety
assessments by injecting faults across thousands of
randomized trials. This allows for statistical
evaluation of failure rates and fitting to known
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distributions such as Weibull or Lognormal [6], [7].
The second stream focuses on recursive state
traversal to generate Minimal Cut Sets (MCSs)—the
smallest fault combinations that can result in
system-level hazards—providing diagnostic insight
but lacking probabilistic quantification [3]. While
each offers distinct strengths, Monte Carlo lacks
root cause visibility, and MCS approaches lack
probabilistic quantification. Table 1 summarizes
these differences.

Recent research suggests that combining
these complementary methods enhances both
diagnostic  depth and  probabilistic  rigor.
Frameworks that integrate Monte Carlo simulation
with state-space exploration offer richer insight into
both the likelihood and causes of unsafe states [8].
Such synergy also improves scalability, allowing for
early validation and updates aligned with design
changes.

This paper proposes a hybrid model-based
safety and resilience analysis framework that unifies
Monte Carlo simulation and recursive state traversal
into a single, Simulink-driven process. The
framework enables:

1) Quantitative safety assessment through
Monte Carlo-based estimation of unsafe condition
probabilities;

2) Qualitative diagnostics via state
traversal with reduction techniques to identify
critical MCSs.

The rest of the paper is structured as
follows. Section 2 outlines the methodology and
system modeling. Section 3 presents the
implementation of fault injection and simulation. In
section 4, a lateral-directional flight control system
is used as a case study. Section 5 concludes with
implications for certification and future work.

II. METHODOLOGY

The hybrid workflow starts with a
Simulink-based nominal model of the fly-by-wire
(FBW) control system, Fig.1 illustrating the
system’s dynamic behavior under normal
conditions. A dedicated fault injection module
introduces seven key failure modes—omission,
random, stuck, delayed, trailing, gain change, and
biased—into system components such as primary
flight computers, actuators, and sensors. The faulted
model supports two complementary analysis paths.
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The first is the probabilistic path, where Monte
Carlo simulations use randomly generated failure
times to perform repeated trials; system responses
are monitored until safety thresholds are crossed,
and the resulting time-to-unsafe-condition data are
fitted to Weibull or lognormal distributions to
estimate the failure probability per flight hour. The
second is the diagnostic path, where a recursive state
traversal algorithm systematically evaluates failure
combinations, applying state-space reduction to
identify minimal cut sets (MCSs)—the smallest sets
of component failures that lead to unsafe states.
Together, these two paths offer both quantitative
reliability metrics and qualitative diagnostic
insights, enabling a thorough safety and resilience
assessment of the FBW system. This integration
ensures the framework can cover both fault causality
and risk impact in a unified workflow.

' Sumulink Nomunal Model

| |
’ Fault Injection | ‘ Probabilistic ’ Dingnostic

Analysis

Analysis

[
v

‘ Monte Carlo Simulation ‘

[ «
State Minimal
[raversal Cut Sets

Fig. 1. Central Simulink model feeding two paths

2.1 System Modeling via Simulink

The lateral-directional fly-by-wire (FBW)
system integrates Primary Flight Computers (PFCs),
dual-redundant actuators, triple modular redundant
(TMR) sensors and inertial measurement units
(IMUs), and control surfaces (ailerons and rudder)
to ensure stability and fault tolerance. The PFCs,
each with command and monitor channels, process
pilot inputs and sensor data to command actuators
while cross-verifying outputs for safety [9], [10].
Redundant actuators and TMR sensor architectures,
supported by 2-out-of-3 voters, allow continued
operation despite single failures. While this
redundancy enhances resilience, it also introduces
complex failure interactions, requiring model-based
safety analysis (MBSA) with Simulink-based
dynamic modeling, fault injection, Monte Carlo
simulation, and state traversal to identify minimal
cut sets (MCSs) and evaluate unsafe condition
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probabilities [11], [12]. Figure 2 shows the
architecture of the FBW system.

The roll control law governing the lateral-
directional  fly-by-wire (FBW) system, as
implemented in the Primary Flight Computers
(PFCs), integrates pilot inputs, sensor feedback, and
actuator states to ensure coordinated roll response
and overall stability. To achieve this, it is essential
to define and implement a control law equation that
effectively governs the system’s dynamic response
to control inputs under various operational
conditions, incorporating both feedback and
feedforward methodologies to meet performance
requirements and maintain compliance with safety
thresholds. The control law formulation of PFC roll
channel is defined by

s+ 2z,
RT(S) = Krlwc(s) + KTZRb(S) + K3 mpb(s)
587(s) = (B + 2+ Dys) (R, (s) +
K5.7() ()

Where @.(-) is the pilot roll command
input, R, (+) and P, (+) is the yaw rate signal and the
roll rate signal, 52’ () is the deflection angle of the
left/right aileron, 5}1: (*) is the output response of the

roll control law and R,.(*) is the intermediate roll
rate command. And the values of the coefficients are
given as K, =0.66, K, =0.145s, K, =2.16s, K, =
1.33,Z, = 11.1s7 %, P. = 25571, P. = 0.45A, I, =
6A/s, D, =0.01As [11], [12].

Fig. 2. Fly-by-Wire system architecture [11].

The safety thresholds for the lateral-
directional fly-by-wire (FBW) flight control system
are established as the maximum allowable
deviations of key performance metrics from their
nominal, failure-free responses, serving as critical
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benchmarks for assessing the system’s operational
limits and ensuring its safety performance under
both normal and fault conditions. The system is
considered unsafe if any of these limits are
exceeded:

lyi(®) —ynOI<R;, =1234 (2)

where y;(t) is the response value of the ith
performance metric, y,;(t) is the reference value of
the ith performance metric which is the response of
the failure-free configuration, R; is the threshold of
the ith performance metric. And any deviation
beyond these thresholds indicates the system has
entered an unsafe condition. Specifically, y, (t) =
@(t) is the Roll angle, y,(t) = B(t) is the Sideslip
angle, y;(t) = pp(t) is the Roll rate, and y,(t) =
1, (t) is the Yaw rate; R, = 0.15rad, R, = 0.15rad,
R; = 0.45rad/s, R, = 0.45rad/s.

The Simulink model typically
encompasses state-space representations, transfer
functions, and dynamic blocks to simulate the
behavior of the fly-by-wire control systems
effectively.

State space models are crucial as they allow
for the representation of multiple inputs and outputs,
thus facilitating the complexity of FBW systems that
must respond dynamically to pilot commands and
environmental conditions [11], [13]. In state-space
representations, the system's dynamics are
encapsulated in a set of first-order differential
equations that describe the relationships between the
system inputs, outputs, and internal states.
Therefore, state-space function is expressed by:

{J'c(t) = Ax(t) + Bu(t) 3)
y(t) = Cx(t) + Du(t)

where x(t) is the vector of state variables,
u(t) is the vector of input variables, y(t) is the
vector of output variables, A is the system matrix, B
is the control matrix, C is the output matrix and D is
the feedforward matrix.

Transfer functions serve as an alternative
mathematical representation of the system
dynamics, particularly useful for analyzing the
frequency response of the system. Transfer
functions relate the output of the system to its input
in the Laplace domain. They provide insights into
system stability and performance under varying
conditions, which is paramount for ensuring
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compliance with airworthiness requirements for
FBW systems [11], [16].

Dynamic blocks in Simulink help simulate
various components of the FBW system, including
actuators, sensors, and redundant components.
These blocks can represent non-linear behaviors and
the complex dynamics characteristic of real-world
systems. Moreover, these dynamic elements can
model failure scenarios, which are crucial for fault
injection studies designed to evaluate the resilience
of the system under various fault conditions [13].

2.2 Fault Injection Framework

A fault injection framework systematically
evaluates the safety and fault tolerance of systems
by simulating component-level failures within a
model-based environment. In  safety-critical
applications such as fly-by-wire (FBW) flight
control systems, the framework enables the
deliberate injection of representative fault modes—
such as omission, delay, random, stuck, trailing,
gain change, and bias—into a validated nominal
model. This allows for the analysis of system
responses against predefined safety thresholds,
aiding in the identification of unsafe states and the
determination of minimal cut sets (MCSs) that
highlight critical failure combinations. Ultimately,
the framework offers a robust and automated
method for assessing system resilience under fault
conditions, playing a crucial role in the early-phase
validation and certification of complex aerospace
systems. The failure modes for FBW components
are summarized in Table 1 below.

Table 1. Failure Modes For FBW Components
[11],[12]

s on Output stuck at

Stuck the last correct
value
Sensors ~ Omissi  Output is null
on Output scaled by
Gain a factor
Change Output scaled by
a factor 3x1077
Biased
Control  Stuck Output stuck at
Surfaces the last correct
Trailin ~ value
g Output is
decided by the
aero-dynamic
Inertial Omissi  Output is null
Measure  on Output scaled by
ment Gain a factor
Units Change Output scaled by
(IMU) a factor
Biased

Fault Injection Structure in Simulink: A
structured approach to fault injection in Simulink
models involves the use of specialized blocks that
can be inserted into the system model. These blocks
are responsible for introducing predefined fault
patterns at specific points in the simulation.

Figure 3 illustrates the internal structure of a
Simulink-based fault injector used for model-based
safety analysis of a Fly-By-Wire (FBW) system.

The injector dynamically selects between a
failure-free output and multiple predefined fault
modes using a control signal. Each fault mode is
modeled as a separate path within a Variant

Compon Failure

Failure Rate

Subsystem, allowing seamless switching during
simulation [11], [18]. This enables automated fault
injection driven by scenario logic or Monte Carlo

ent mode Description (1/h)
PFC Omissi ~ Output is null 2x1077
on Output changes
Rando  unpredictable 1x1077
m Output stuck at
the last correct 1x 1077
Stuck value
Output is 1x 1077
Delaye delayed for a
d certain time
Actuator  Omissi  Output is null 1x107°

sampling, supporting both structural (minimal cut
set) and probabilistic (failure likelihood) safety
evaluations without altering the core system model.
The flexibility offered by these blocks allows
engineers to configure and control the exact
conditions under which faults are introduced,
facilitating extensive testing without altering the
core model structure.

The Monitoring Block compares the output
of the potentially faulty component against the
corresponding reference signal from the failure-free
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configuration. If the difference between the two
exceeds pre-defined safety thresholds (e.g., in roll
angle or yaw rate), the system is flagged as being in
an unsafe condition, and the simulation may be
terminated early to capture time-to-failure statistics.

K ot Oulpas
— 5

Haves

Fig. 3. Fault injection and monitoring flow for
model-based safety analysis

2.3 Probabilistic Analysis

In the Monte Carlo simulation process, the
failure time of each component failure mode is
treated as a random variable following an
exponential distribution. This is a standard approach
in reliability analysis due to the distribution’s
memoryless property. The time to failure is sampled
using the inverse transform method:

t=—>In(1-7) )

where A is the constant failure rate and
r~U(0,1) is a uniformly distributed random
variable. This sampling technique enables the
generation of realistic failure times for each failure
mode. During each simulation run, failure times for
all relevant modes are sampled and ordered. Failures
are sequentially injected into the system model
according to their occurrence time. The system
response is monitored after each injection, and the
simulation is terminated when an unsafe condition is
detected. Repeating this process over many
iterations yields a set of time-to-unsafe-condition
samples, which are used to estimate the probability

probability of unsafe conditions in the Fly-By-Wire

(FBW) system:

1) Sampling Failure Times: For each failure mode
j of component i, a failure time ¢;; is sampled
from an exponential distribution with failure
rate 4;;, using the inverse transform method:

1
tij = —Tuln(l - rij)’ T'U""U(O,l) (5)

This step generates a complete set of failure
times for all component-mode pairs in the system.
2) Determining Failure Sequence: the set of all

sampled failure times {ti j} is sorted in
ascending order to form a sequence of events:

T = {(iy,j1, t1), (s J2r 82), -, (i i T},

t, <ty <...<ty (6)

Each tuple in T identifies the component
i, its failure mode j,, and the corresponding time of
occurrence ty.

3) Sequential Fault Injection: Failures are injected
into the system sequentially according to the
ordered list T. After each fault injection at time
ty , the system model (e.g., Simulink) is
executed forward to observe the resulting
behavior. The system’s performance metrics
y(t) (e.g., roll rate, yaw rate) are continuously
monitored and compared against defined safety
thresholds R;:

[vi(®) = Vires (O] > R;
Unsafe condition (7)

Where, ¥;,.r(t) denotes the failure-free
(nominal) response.

4) Termination and Time Recording: The
simulation terminates at the first time t; where
an unsafe condition is detected. This value tf is
recorded as the time to an unsafe condition for
that trial:

Tan = t ®)

If no unsafe condition occurs within the
mission time, Tf(fi)l may be right-censored.

By repeating this process over N trials, a

sample set {Tfla”, ..... , Tf%g} is obtained.

The resulting empirical distribution of
time-to-unsafe-condition is used to fit a Weibull

distribution of failure and evaluate system safety and distribution: 8
resilience. F(t)=1—exp (— (ﬁ) ) )
In each Monte Carlo simulation trial, the
following procedure is executed to estimate the
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where « is the scale parameter and f the
shape parameter estimated via maximum likelihood
estimation (MLE) or regression fitting.

The fitted distribution enables the
calculation of the cumulative probability of an
unsafe condition up to time t, the instantaneous
failure rate (hazard function), and the mean time to
failure or unsafe condition.

For systems with periodic inspection or
maintenance intervals (e.g., every 500 hours), the
probability of experiencing an unsafe condition
within that interval is directly computed from the
fitted cumulative distribution:

Punsafe(t = 500) = F(SOO) (10)

This probabilistic output provides a
quantitative basis for safety certification and
resilience evaluation.

2.4 Diagnostic Analysis

To systematically identify all potential
failure combinations that may result in unsafe
system conditions, a recursive state traversal
algorithm is employed. This approach enables the
enumeration of failure combinations across multiple
components and failure modes, forming the basis for
minimal cut set (MCS) extraction.

2.4.1  Problem formulation

Let the system consist of components,
where each component i € {1,2,...,m} has n;
distinct failure modes. Define a failure configuration
vector:

C =|cy,¢p...,c3]€EZTY, (11)

Where each element c; is defined as:

Ci
0,if component i is not failed
- {j, if componenti fails modej, 1<j<mn

The number of nonzero elements in C
determines the order q of the failure combination,
i.e,, the number of components failed in that
configuration.

2.4.2  Recursive Traversal Algorithm

To construct all possible failure
combinations of order q, the algorithm proceeds
recursively: let q € {1,2,...,m} be the desired
failure combination order and initialize the recursion
depth k = 1 and component index i;, = 1.

Steps:

1) At recursion depth k, select the k-th failed
component iy € {i,_; +1,...,m} and
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assign a failure mode ¢; = j where j €

{1,...,nik}.

2) If k=gq , store the resulting failure
configuration C.

3) Ifk < gq, increment k and continue step (1)
with i, = i,_; + 1.

4) After exploring all j € {1,...,nik} for the
current i, , backtrack; Reset ¢; = 0 and
decrement k, and continue to the next
unvisited component.

2.4.3  State Space and Reduction

The total number of configurations without
optimization is:

N =3 (M) (12)

To reduce computational cost, the
following state space reduction rules may be
applied:

1) Subset Elimination: If a  failure
configuration is a superset of a known
minimal cut set, it is discarded.

2) Redundancy Elimination: Failure
combinations involving redundant
components that do not contribute to unsafe
outcomes are omitted (e.g., in k-out-of-n
architectures).

3) Equivalence Collapsing: Symmetric or
equivalent failures in replicated subsystems
are counted only once.

244  Minimal Cut Set Identification

Figure 4 shows the flowchart of recursive
traversal process of MCS identification for each
generated configuration C The extended system
model is simulated with the corresponding failure
modes injected. If the system enters an unsafe
condition (as defined by threshold violation in
monitored outputs), C is recorded as a cut set.

A minimal cut set (MCS) is defined as a cut
set for which no proper subset is itself a cut set. After
all simulations:

1) All recorded cut sets are analyzed,

2) Supersets of other cut sets are removed,
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3) The remaining configurations form the final

set of MCSs.
Stant
|
|
\J
Tesminute
Injoct Fault
9
' \
' \
Simulated Mode & Backtrack/Nest Fault
i *
Check Thresholds Log MCS

Fig. 4. Flowchart of Recursive Traversal Process for
Minimal Cut Sets (MCS)

2.4.5  Resulting Utility
The identified MCSs are used in both
qualitative safety assessments (e.g., identifying
critical failure scenarios) and quantitative analysis,
such as computing system-level failure probability:
Punsafe = ZCEMCSP(C) (13)
assuming independence among failure events.

2.5 Integration of both Analysis

To integrate Monte Carlo simulation
results with Minimal Cut Set (MCS) analysis, we
combine probabilistic estimation of failure
occurrence (via simulation) with structural insights
into failure causality (via state traversal). This fusion
provides both a quantitative measure of unsafe state
probability and qualitative diagnostic insights into
which components or combinations critically affect
system resilience.

2.5.1  Probability of Unsafe Condition Over

Time

The cumulative probability of entering an
unsafe condition by time is estimated empirically
from or by fitting a Weibull distribution:

Punsafe (t) = ﬁ(t) =1-exp (_ (i)ﬁ)

(14)

where and are the scale and shape

parameters estimated from simulation data via
maximum likelihood estimation.

This function gives the system-level
likelihood of experiencing a critical failure (crossing
the unsafe threshold) by time t, incorporating the
probabilistic timing of component failures.
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2.5.2  Diagnostic Risk Attribution via MCSs

Each minimal cut set represents a
structurally critical combination of component
failures. Assuming independence among failure
modes, the probability of each MCS over a mission
time is:

P(Ck; t) = Hiesupp(ck) Pi,ci ®) (15)
where:

supp(Cy,) = {i:c; # 0} is the support
(indices of failed components),

¢; is the specific failure mode index for
component i,

PO =1- e Mt is the cumulative
failure probability for the failure mode c¢; of
component i.

The total probability of unsafe conditions
via the MCS approximation is:

Pycs(8) = Xcpem P(Cis t) (16)

To correct for overlapping (non-disjoint)
events, inclusion-exclusion or Monte Carlo-based
aggregation is preferred.

1) Combined Diagnostic and Probabilistic

Interpretation
[
: (T e T o
5 s 1= +E
M | I E:
S || e
] B
—
F =

By ranking MCSs C; based on P(Cy;t),
We  identify  high-contributing  component
combinations. For example:

If P(C3;500h) = 1.3 X 1075 contributes
45% of Pyc5(500), then C; dominates system risk.

Components appearing most frequently
across high-probability MCSs are diagnostically
critical.

Monte Carlo simulation provides temporal
failure dynamics, while MCSs offer structural
traceability. Their integration enables both risk
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quantification and root-cause  prioritization,
essential for certification and design mitigation.

1. CASE STUDY AND RESULTS

The study centers on the lateral-directional
fly-by-wire (FBW) control system, a vital
technology in modern aircraft that replaces
mechanical linkages with electronically managed
flight controls. By integrating software and
hardware to interpret pilot commands and manage
aircraft dynamics, the FBW system improves
precision, responsiveness, and operational safety. It
forms a key layer in maintaining flight stability,
especially in the presence of variable aerodynamic
conditions.

The FBW system architecture is composed
of four primary elements: Primary Flight Control
Computers (PFCs), which process pilot inputs and
execute control algorithms; actuators like the Left
and Right Aileron Actuators (LAA, RAA) and
rudder actuators, which physically adjust the
aircraft's orientation; Triple Modular Redundant
(TMR) sensors, which ensure reliability by detecting
discrepancies across redundant sensor inputs; and
the control surfaces themselves—ailerons and
rudders—which directly influence the aircraft’s roll
and yaw.

Figure 5 shows the lateral-directional FBW
system whose components work cohesively to
provide a resilient and fault-tolerant system. The
architecture is deliberately designed to handle
individual component failures while maintaining
safe flight performance. The study will use an
architecture ~ diagram  to  illustrate  these
interconnections and demonstrate how fault
injection and Monte Carlo simulation techniques are
used to evaluate system safety and identify
vulnerabilities. Each architectural element plays a
foundational role in supporting the system’s
reliability and forms the basis for further safety and
resilience analysis.

Fig.5. The architecture of the lateral flight control
[12]

3.1 Monte Carlo Simulation Results

A Monte Carlo simulation is applied to
capture the probabilistic nature of fault occurrence
over time. Failure times for each component-mode
pair are randomly sampled from exponential
distributions using known or assumed failure rates.
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TPerformed by injecting random failure
times into critical components. A total of N = 2000
simulations were executed. Figure 6 shows the
histogram of time-to-unsafe-condition overlaid with
a Weibull distribution fit, with shape parameter § =
1.73 and scale parameter a = 910 hours.
Fig. 6. Histogram of time-to-unsafe-condition fitted
with  Weibull distribution. The distribution
demonstrates the temporal risk profile and helps
estimate failure probabilities for certification.

Based on this fit, the probability of an
unsafe condition occurring within a single flight
hour was calculated as Pi, = 3.1 x 10°¢, and the
probability of failure within a 500-hour maintenance
interval was approximately 0.0015. These results
demonstrate compliance with safety thresholds and
confirm the reliability of the current FBW design
under the modeled failure modes.

S~
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3.2 State Traversal Results

State traversal analysis revealed that
certain combinations of faults were
disproportionately critical. Using a recursive
traversal algorithm, the analysis identified minimal
fault combinations responsible for system failure.
From an initial set of 4000 possible combinations,
state-space reduction techniques removed 65% of
redundant or non-contributing states. For example,
Gain Change in PFCl combined with a Biased
sensor in Sensor2 (Rank 1) consistently resulted in
threshold violations. Similarly, simultaneous Stuck
and Omission faults in the actuator and sensor
pathways led to loss of lateral control. These
Minimal Cut Sets (MCSs) represent the smallest
fault sets capable of triggering system-level hazards
and are invaluable for targeted mitigation, such as
redundancy enhancement or real-time fault
detection prioritization. Table 2 lists the top five
Minimal Cut Sets (MCSs), ranked by likelihood and
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criticality. This specific pair disrupts both control
logic and feedback accuracy, making it particularly
hazardous under dynamic flight conditions.

Table 2. Top MCS risk Contributions

MCS Compone Failure Contribut
ID nts Probability ion (%)
MCS K5 1.30E-06 24.53
1
MCS L5 1.20E-06 22.64
2
MCS M5 1.10E-06 20.75
3
MCS Al+F4 9.00E-07 16.98
4

MCS  H4+J4+R  8.00E-07 15.09
5 A2

A key strength of the hybrid method lies in
its automation and seamless integration with the
system's Simulink model. Fault propagation,
threshold evaluation, and outcome classification are
performed within the simulation loop, eliminating
the need for manually constructed fault trees or
Markov chains. Design changes can be immediately
reflected by updating the Simulink model, enabling
continuous safety assessment throughout the
development lifecycle.

3.3 Comparison to Traditional Methods

In contrast to conventional methods like
Fault Tree Analysis (FTA) and Markov modeling,
which often suffer from scalability issues and static
modeling limitations, which suffer from exponential
state-space growth in redundant systems, the hybrid
approach avoids combinatorial explosion. Table 3
shows the comparative analysis of traditional,
MBSA, and hybrid safety approaches. Recursive
state traversal with pruning strategies reduced the
number of evaluated fault cases by over 60%,
offering significant computational savings while
retaining coverage. Monte Carlo simulation
complements this with probabilistic insight across a
wide range of scenarios.

3.4 Certification and Design Implications

The dual output—quantitative reliability
and qualitative diagnostic insight—directly supports
safety certification processes (e.g., CS 25.1309 for
transport aircraft). Certification engineers can trace
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risk contributors using MCSs and assess compliance
with failure rate requirements. Table 3 Moreover,
design teams benefit by identifying critical
components and fault interactions early in
development, enabling informed design trade-offs
and test prioritization before physical prototyping.
This framework can also be embedded into
continuous development pipelines where each
model update triggers automated safety evaluations.

Table 3. Comparative analysis of traditional,
MBSA, and hybrid safety approaches.
Aspect  Traditi Monte State Propo

onal Carlo Traver sed
Metho (MBS sal Hybri
ds A) (MBSA d
(FTA) ) (Mont
e
Carlo
+
Trave
rsal)
Model Manual Execut Executa Execu
type , able ble table
Integra abstract Simuli Simulin  Simuli
tion models nk k model nk
model model
Probab Yes Yes No Yes
ility (limite  (statist
Estima d state- ical
tion space)  distrib
ution)
Diagno Partial No Yes Yes
stic (fault (MCS
Insight  trees) identific
(MCS) ation)
Scalabi Poor High Mediu High
lity (state m (pruni
explosi ng
on) enable
d)
Autom Low Mediu  Mediu High
ation (manua m m
1
enumer
ation)

Design = Low High High High
Consist (model
ency
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cation te te
Releva
nce

3.5 Extension to Resilience Evaluation

While the current study emphasizes
mechanical and random faults, the framework's
modular design facilitates its extension to cyber-
physical threat analysis., The same framework is
extensible to cyber-physical threats. For instance,
sensor spoofing or actuator command injection can
be modeled as biased or delayed faults. By injecting
these artificial disturbances, developers can evaluate
the system’s resilience against adversarial
conditions, making this framework relevant for
future autonomous and unmanned systems
operating in contested environments.

Iv. DISCUSSION

The hybrid framework is fully integrated
with the Simulink system model, allowing automatic
fault injection and output evaluation within the same
simulation environment. Unlike traditional safety
tools (e.g., FTA, Markov), which require manual
modeling and static structures, this approach updates
seamlessly when the system design evolves. Any
change in the control logic, component behavior, or
architecture is directly reflected in the safety
analysis without rebuilding models from scratch.

This automation significantly reduces
human error, modeling effort, and update lag during
iterative development.

One of the key advantages of the hybrid
method is its ability to provide both quantitative and
qualitative results:

1) Monte Carlo simulation estimates the
probability distribution of unsafe conditions
under randomized fault scenarios, offering
time-to-failure statistics and compliance checks
against thresholds.

2) Recursive state traversal identifies Minimal Cut
Sets (MCSs)—the smallest fault combinations
that lead to hazards—offering actionable
diagnostic insights.

This dual-output capability allows system
engineers and certifiers to not only assess how likely

www.ijmret.org

a failure is, but also which combinations of faults are
most dangerous, supporting deeper root cause
analysis and more focused mitigation strategies.
Future research may incorporate human factors,
operator response times, and delayed detection logic
into the fault models for even greater fidelity.

Traditional methods like Markov modeling
and FTA become impractical in systems with high
redundancy or complex interactions due to state-
space explosion. Modeling every possible fault
combination or transition quickly becomes
intractable. In contrast, the hybrid method uses
dynamic simulation with state pruning, where only
relevant paths are explored through traversal and
non-minimal states are discarded. This enables
analysis of large, realistic systems without
overwhelming computational resources.

The framework aligns closely with
regulatory safety assessment requirements (e.g., CS
25.1309) by providing both failure probability
estimates and evidence of failure containment
strategies. Because it’s directly based on the
Simulink design model, it supports early-stage
validation, enabling certification-driven feedback
during the development phase. Designers can
identify weak points early, reallocate redundancy,
and refine control strategies before costly prototypes
are built.

Beyond mechanical or random faults, the
same simulation infrastructure can model malicious
or adversarial inputs—such as sensor spoofing,
signal delays, or actuator command manipulation.
By defining these attack modes as injected faults, the
framework can assess the resilience of the control
system under coordinated cyber-physical threats.
This opens a pathway for future research in
robustness and cybersecurity of autonomous or
highly networked airborne systems.

V. CONCLUSION

This paper presented a hybrid model-based
safety and resilience analysis framework for fly-by-
wire (FBW) control systems, integrating Monte
Carlo simulation and recursive state traversal within
a Simulink environment. The approach enables
dynamic fault injection, probabilistic failure
estimation, and diagnostic insight—providing a
more scalable and design-consistent alternative to
traditional methods such as Fault Tree Analysis and
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Markov modeling.

The key contributions include:

1) A Simulink-based fault injection architecture
capable of modeling multiple failure modes,

2) Probabilistic evaluation of system failure using
Monte Carlo simulation and Weibull fitting,

3) Diagnostic generation of Minimal Cut Sets
(MCSs) via state traversal with pruning,

4) A dual-output system that supports both
certification requirements and
design iteration.

By combining quantitative safety metrics

(e.g., probability of unsafe conditions) with
qualitative diagnostics (e.g., MCSs), the framework
supports a comprehensive assessment of FBW
system reliability. It improves automation, avoids
state explosion, and remains tightly integrated with
evolving system models.

early-stage

Future work will explore the inclusion of
dependent failure modes, scalability to larger and
more complex avionics systems, and extension of
the methodology for evaluating resilience against
cyber-physical  attacks.  These
advancements aim to further enhance the
applicability of model-based safety analysis in next-
generation safety-critical aerospace platforms.

coordinated
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