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ABSTRACT: The aviation industry is transitioning from reactive to predictive maintenance as aircraft
subsystems grow increasingly complex. This paper presents a qualitative review of machine learning (ML)
approaches for fault prediction in the Airbus A320 Air Conditioning System (ACS), emphasizing interpretability,
socio-technical integration, and regulatory alignment. Unlike prior research that prioritizes algorithmic
performance metrics, this study consolidates existing literature and industry practices to propose a structured
framework for integrating interpretable ML into predictive maintenance workflows.The analysis highlights the
strengths of Random Forests and Decision Trees in handling multidimensional sensor data while maintaining
transparency. Supported by SHAP-based explanations, these models can provide actionable insights that build
technician trust and facilitate regulatory acceptance. Beyond technical performance, the framework addresses
organizational readiness, workflow compatibility, and compliance with aviation standards, including DO-178C,
ARP4754A4, and ICAO’s Safety Management System (SMS).A conceptual validation pathway is proposed,
progressing from retrospective analysis to shadow-mode deployment and monitored roll-out, ensuring human-in-
the-loop oversight throughout. The study concludes that interpretable ML, when combined with regulatory
governance and human-centered design, offers a viable pathway toward safer, cost-efficient, and operationally
sustainable maintenance in commercial aviation.

KEYWORDS -Airbus A320, Air Conditioning System (ACS), Predictive Maintenance, Machine Learning,
Explainable Al, Aviation Safety.

I. INTRODUCTION
The aviation industry has always

rise, operators face growing pressure to maximize
fleet availability while minimizing downtime,

prioritized safety, reliability, and cost-efficiency.
With the increasing complexity and interconnection
of modern aircraft systems, traditional maintenance
practices centered on scheduled inspections or
reactive diagnostics have shown significant
limitations. Particularly for critical subsystems such
as the Air Conditioning System (ACS) in the Airbus
A320, unanticipated failures not only compromise
passenger comfort and safety but can also cause
delays, operational disruptions, and increased
maintenance costs. As global air traffic continues to
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necessitating a shift toward more intelligent,
adaptive maintenance strategies.

In this evolving landscape, machine
learning (ML) has gained attention as a tool for
predictive maintenance. Unlike rule-based or
threshold-driven diagnostics, ML algorithms can
learn patterns from complex, high-volume datasets
such as real-time sensor streams, flight records, and
historical maintenance logs. By jointly analyzing
temporal, environmental, and mechanical variables,
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ML methods can anticipate potential failures before
they manifest, thereby reducing unscheduled
interventions and optimizing resource allocation.
For example, Bhola and Malhotra (2020)[1] showed
that predictive paradigms can significantly improve
operational efficiency, while Jennions et al.
(2022)[2] and Zhang et al. (2024)[3] highlighted the
potential of ML models to address rare fault
detection in highly imbalanced datasets.

The Airbus A320, one of the most widely
used commercial aircraft worldwide, provides a
compelling test-bed for predictive maintenance
research. Its ACS integrates multiple sensors that
record airflow, temperature, compressor activity,
and valve positions, generating multidimensional
data during every flight. Manually analyzing these
signals to detect early indicators of degradation is
both labor-intensive and error-prone. Supervised
learning techniques such as Random Forests,
Decision Trees, and Logistic Regression have
therefore been investigated for their ability to
capture subtle correlations among system variables.
When embedded into Aircraft Health Monitoring
Systems (AHMS) and linked with digital twin
frameworks, such models support condition-based
maintenance by enabling proactive interventions
without disrupting operations.

Despite  these advances, important
challenges remain. Most prior studies focus
narrowly on algorithmic accuracy, often neglecting
socio-technical factors such as technician usability,
workflow integration, and compliance with
regulatory standards like DO-178C and Safety
Management Systems (SMS). As a result, the
pathway from research prototypes to operational
deployment remains underexplored.

This paper addresses that gap by presenting
a qualitative synthesis of existing work and
developing a conceptual framework for the safe and
interpretable integration of ML-based fault
prediction into Airbus A320 ACS maintenance
workflows. Rather than reporting new model
training experiments, we consolidate prior findings
to evaluate feasibility, interpretability, and practical
barriers to adoption. The framework emphasizes the
convergence of technical model design, human-
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centered usability, and regulatory assurance,
contributing a holistic perspective often absent from
predictive maintenance literature.

Contributions

This paper makes the following
contributions to the literature on predictive
maintenance in aviation:

Qualitative Synthesis of ML Approaches —
consolidates prior studies on machine learning-
based fault prediction with a focus on the Airbus
A320 Air Conditioning System (ACS), highlighting
patterns, challenges, and open gaps.

Socio-Technical Integration Framework —
proposes a conceptual pathway for embedding
interpretable ML into ACS maintenance workflows,
emphasizing technician usability, workflow
compatibility, and stakeholder trust.

Regulatory Alignment Perspective — links
predictive maintenance practices with safety
assurance frameworks such as DO-178C and Safety
Management Systems (SMS), offering insights into
certification and compliance challenges.

Future Research and Practical Directions —
identifies limitations in current approaches, such as
imbalanced datasets and limited real-world
validation, and provides recommendations to guide
both academic research and industrial adoption.

II. LITERATURE REVIEW

2.1 Technical Advances in ML for
Predictive Maintenance

Machine learning has been increasingly
applied to predictive maintenance in both HVAC
and aviation domains. Arshad, Tyagi, and Kalia
(2023) [4] demonstrated that ensemble methods
such as Random Forests perform robustly on noisy,
multidimensional datasets, while Bhola and
Malhotra (2020) [1] showed that supervised models
can detect anomalies earlier than rule-based systems
in air conditioning maintenance. Similar trends are
evident in aviation-specific contexts, where
supervised models have been applied to sensor-rich
subsystems like the A320’s Air Conditioning
System (ACS). These approaches highlight ML’s
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capacity to process high-frequency flight data and
detect subtle precursors of failure. However, most of
these contributions prioritize
performance metrics (e.g., accuracy, F1-scores) over
issues of explainability or deployment readiness.

numerical

2.2 Data Challenges in Aviation Fault Prediction

One persistent challenge is rare fault
detection in imbalanced datasets. Jennions, King,
and Skaf (2022) and Dangut et al. (2023) [2]
emphasized that most recorded flight data represent
healthy system states, limiting model generalization
to rare but critical failures. To address this, hybrid
methods and data fusion strategies have been
proposed, integrating sensor readings with historical
maintenance records. Zhang, Li, and Wang (2024)
[3] further advocate for collaborative data-sharing
ecosystems to enhance scalability and improve
diagnostic  accuracy across fleets.  These
contributions underscore the necessity of unified
data infrastructures but leave open questions around
data governance and standardization.

2.3 Explainability and Operator Trust

While predictive performance is important,
model interpretability has emerged as a decisive
factor in aviation adoption. Amann et al. (2020) and
Miller (2019) argue that explainability is central to
operator trust, particularly in safety-critical settings.
Recent studies (Wang et al., 2024; Liu et al., 2025;
Raj & Thomas, 2024) demonstrate the use of SHAP
(SHapley Additive Explanations) in aerospace and
HVAC time-series contexts. These works show how
SHAP can identify influential features such as
compressor temperature, precooler pressure, and
cabin zone readings. Yet, Garcia et al. (2023) and
Kim et al. (2023) caution that there remains a gap
between mathematically faithful explanations and
practical interpretability for technicians and
regulators.

2.4 Regulatory and Governance
Perspectives

The integration of predictive maintenance
tools into aviation must align with regulatory
frameworks. Bhola and Malhotra (2020) [1] and
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Striim (2024) [5] note that compliance with
standards such as EASA’s Al Roadmap (2020),
ICAO’s Safety Management System (SMS), and
DO-178C requirements presents significant hurdles,
given ML’s adaptive nature. WeShield (2024) [7]
suggests hybrid assurance strategies, where
probabilistic  predictions are paired with
deterministic safety checks to meet certification
demands. Beyond model validation, studies
emphasize the importance of governance
mechanisms such as continuous monitoring, audit
trails, and alert triage protocols to ensure
accountability in operational contexts.

Collectively, these studies establish a
strong technical foundation for ML-based fault
prediction in aviation. However, gaps remain in
three critical areas: (1) limited adoption of
interpretable methods, (2) insufficient attention to
human factors and workflow integration, and (3)
unresolved tensions between adaptive ML systems
and static regulatory requirements. Addressing these
gaps provides the rationale for the socio-technical
integration framework developed in this paper.

Table 01 : Summary of Reviewed
Studies on ML for Predictive Maintenance in
Aviation and Related Domains
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The summary in Table 01 highlights both
the breadth and fragmentation of current research on
ML-based predictive maintenance. Across domains,
ensemble and hybrid models have consistently
shown  promise in  handling  complex,
multidimensional data, while deep learning
approaches are increasingly applied to rare fault
detection. However, interpretability methods are
either absent or treated superficially in most studies,
with only a limited number explicitly applying
SHAP or similar XAI techniques. Furthermore,
while industry reports and conceptual studies
acknowledge the importance of regulatory
compliance, few
systematically map predictive models to
certification frameworks such as DO-178C or ICAO
SMS. Finally, the majority of studies emphasize
algorithmic accuracy but neglect socio-technical
factors, such as technician usability, workflow
integration, and governance mechanisms.

peer-reviewed works

Taken together, these findings reveal a
clear research gap: although ML offers strong
technical capabilities for predictive maintenance,
the lack of integrated, interpretable, and regulation-
aligned approaches limits real-world adoption.
Addressing this gap is the central motivation for the
socio-technical integration framework proposed in
the following section.

I11. METHODOLOGY
Qualitative and Conceptual Framework
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This study adopts a qualitative and conceptual
methodology, rather than an empirical modeling
approach. No new data collection, algorithm
training, or quantitative benchmarking was
conducted. Instead, the paper synthesizes existing
literature and established industry practices to
propose a structured framework for interpretable
machine learning (ML) in the predictive
maintenance of the Airbus A320 Air Conditioning
System (ACS). The methodology is therefore
oriented toward framework  development,
emphasizing data ecosystem characterization,
feature relevance, model interpretability, and
regulatory alignment.

The objective is not to report experimental
performance metrics, but to demonstrate how ML
concepts can be operationally integrated into
aviation maintenance workflows. Accordingly, the
framework is illustrated through conceptual figures
and scenarios, designed to clarify socio-technical
interactions between data, models, technicians, and
compliance structures. These elements establish the
basis for later discussion of interpretability,
organizational fit, and safety assurance.

1. Data Ecosystem and Operational
Context

This study adopts a qualitative, conceptual
methodology. No new empirical data collection,
model training, or performance benchmarking was
undertaken. Instead, the analysis synthesizes
existing literature and established industry practices
to describe the Airbus A320 Air Conditioning
System  (ACS) data ecosystem, relevant
preprocessing strategies, model selection rationales,
and the conceptual application of explainability
techniques. The objective is to propose a structured
integration framework for interpretable machine
learning (ML) within predictive maintenance
workflows.

The effective application of ML in aviation
maintenance is contingent upon the quality,
completeness, and contextual richness of the
underlying data. The ACS of the Airbus A320
comprises multiple components such as
compressors, valves, ducts, and temperature
regulation units monitored through embedded
sensors. These sensors capture operational
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parameters in real time, including airflow rates,
compressor temperatures, and engine rotational
speeds.

The primary categories of data
informing predictive analytics include:

Sensor Data — High-frequency time-series
measurements such as PACK FLOW RI1/R2,
PACK _COMPR _T1/T2, discharge air
temperatures, and engine RPM values (N11-N22).

Flight Operation Logs — Contextual
metadata detailing the operational environment,
including altitude, flight phase, Mach number, and
ambient temperature.

Maintenance Records — Historical
documentation of faults, component replacements,
and corrective interventions, providing a
longitudinal perspective on system performance.

The integration of these three data domains
enables a multi-dimensional representation of
system health, supporting the identification of both
transient anomalies and recurrent failure patterns.
Prior studies (Jennions, King, & Skaf, 2022; Zhang,
Li, & Wang, 2024) underscore the diagnostic value
of correlating real-time sensor telemetry with
maintenance history to enhance fault detection
fidelity.

Figure 1. Socio-technical data ecosystem
for interpretable ML-based ACS fault
prediction, integrating data sources, model
processing, human expertise, and compliance
frameworks.

Socio-technical data ecosystem for interpretable
ML-based fault prediction in the Airbus A320 Air
Conditioning System (ACS). The framework
integrates sensor data, flight operation logs, and
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maintenance records through preprocessing, feature
engineering, and model processing. Outputs are
enhanced by human expertise and governed by
compliance frameworks (DO-178C, ARP4754A,
SMS) to support operational decision-making.

When combined, these data streams form a
multidimensional view of aircraft health, enabling
the detection of both transient anomalies and
recurring failure patterns. Recent studies (Jennions,
King, & Skaf, 2022;[2] Zhang, Li, & Wang,
2024[3]) emphasize the value of cross-referencing
sensor telemetry with historical maintenance logs to
yield a richer context for diagnostic reasoning.

2. Feature Engineering and Relevance to
Technicians

Instead of just aiming for the most precise
algorithms, this study sees the preparation of data as
a crucial first step in how machine learning interacts
with complex aviation data. Sometimes, sensor data
is missing because of issues like dropped signals or
delays. To handle this, missing values are filled in
using methods like averaging or KNN, and
maintenance teams also watch out for missing data
as a sign of sensor problems.

Transforming the data, such as scaling it or
changing its format, helps make the information
easier for humans to understand. For example,
instead of using complex numbers, engineers prefer
inputs like average airflow over 30 seconds, which
match their everyday understanding of system
behavior.

Further, techniques like  Principal
Component Analysis (PCA) reduce the number of
data features, making analysis easier. More
importantly, PCA highlights which system parts are
most important in predicting faults like certain
temperatures or component pressures. These
insights can help engineers focus on specific areas
for inspection or design improvements, creating a
helpful link between data and actual operations.

Table 1: Key Features for Airbus A320
ACS Fault Prediction — Description, diagnostic
relevance, and typical behavior indicators.
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Key operational features for ACS fault
prediction. The table lists selected sensor-derived
parameters, their operational descriptions, and the
rationale for their importance in fault detection, as
informed by prior research and technician expertise.

3 Model Selection and Interpretability
Considerations

Through different models like Random
Forest, Decision Trees, and Logistic Regression.
Instead of just comparing how accurate they are with
numbers, we focused on which model best meets
what stakeholders, like technicians and engineers
need.

Logistic Regression is simple
mathematically, but it has trouble handling the
complex, nonlinear relationships in the air
conditioning system (ACS). Decision Trees are
easier to understand because they use
straightforward if-then rules, which are familiar to
technicians. But, they can sometimes be too perfect
on the training data and not work well on new data.

Among these, Random Forest was the best
choice. It combines many decision trees, making it
more reliable and less likely to be thrown off by
noisy data. It works like a human making decisions
based on multiple clues, which makes its predictions
easier to trust. Additionally, it can tell us which
system variables are most important for making
decisions, helping engineers understand how it
works.

Instead of presenting numeric evaluation
metrics, this study interprets model performance
through stakeholder perspectives: Does the model
highlight the correct variables? Can it explain fault
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triggers in human-understandable terms? Does it
reinforce or challenge technicians’ existing
heuristics?

4. Qualitative
Implementation and Use

Instead of showing how these models
would work in real-time, this part describes
examples of how machine learning (ML) could help
improve maintenance tasks.

Scenarios for

For instance, after a flight, logs are
uploaded to an ML dashboard that spots unusual
patterns in compressor temperatures. If something
looks off, maintenance staff can check recent repairs
or look closely at certain parts for hidden issues.

Another example is that the ML system
runs overnight checks on many aircraft to find early
signs of problems like airflow issues. This helps
schedule inspections for aircraft that might need
maintenance soon. Importantly, these alerts are not
seen as final answers but as helpful clues that
support technicians' decisions, keeping humans in
control.

These scenarios focus on how ML fits into
existing operations. The system is meant to assist,
not replace human judgment. This way of thinking
reduces concerns about perfection and encourages
more trust and use of the technology.

5 Interpretability and System Insight

One of the biggest benefits of using
machine learning is not just making predictions, but
gaining a better understanding of how the system
works. For example, compressor temperature,
especially the reading labeled PACK2 COMPR T,
often shows up as an important sign of possible
problems. This makes sense because if a compressor
isn't working well, it can cause other airflow issues.
The connections seen between airflow, compressor
heat, and engine speed suggest that these parts are
all linked small changes in one can affect the whole
system.

For maintenance engineers, this knowledge
turns ML from just a bunch of numbers into a helpful
tool for diagnosing problems. Visual tools like
heatmaps or flowcharts help teams see how different
system parts are connected, encouraging discussion
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and revealing patterns that might be hard to notice in
separate logs (Striim, 2024).[5]

6. Regulatory and Assurance Context:

Aviation software and data-driven tools
must align with established airworthiness and safety
frameworks. For software contributions, DO-178C
(Software Considerations in Airborne Systems)
defines objectives by Design Assurance Level
(DAL), supported by DO-330 for tool qualification
where applicable.

System-level development follows
ARP4754A, with safety assessment guided by
ARP4761A  (functional hazard assessment,
FMEA/FTA). Cybersecurity risk management
aligns with DO-326A/ED-202A and companion
documents for airworthiness security.

For AI/ML, EASA’s Al Roadmap (Levels
of Assurance) and an operator’s ICAO Safety
Management System (SMS) suggest
human-in-the-loop oversight, monitoring, and
change control. In this paper, we position
interpretable models (e.g., Random Forest with
SHAP) and “shadow-mode” validation to meet
explainability, traceability, and monitoring needs
within these frameworks.
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Figure 02. Conceptual socio-technical
framework linking technical ML components
(data, models, SHAP), human/organizational
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DO-RC

processes (workflows, training), and
compliance/safety elements (DO-178C,
ARP4754A, SMS), converging in operational
decision support with feedback loops.

Conceptual SHAP (SHapley Additive
Explanations) summary plot ranking the most
influential ACS parameters in Random Forest
predictions. Feature importance is presented in
terms of average SHAP value magnitude,
illustrating how parameters such as
PACK1 DISCH T, PRECOOL PRESS2, and

TEMP_FORE CAB contribute to fault
classification.
7.Validation and Assurance Pathway

(Conceptual)

Given the qualitative and conceptual nature
of this study, a hypothetical validation pathway is
proposed to guide the structured and safe
deployment of interpretable ML models for the
Airbus A320 Air Conditioning System (ACS) fault
prediction. The pathway is designed to align with
regulatory intent under DO-178C, ARP4754A, and
the operator’s Safety Management System (SMS),
while ensuring human oversight and operational
assurance.

The proposed five-stage pathway is as follows:

Retrospective Offline Review — Apply the
model to historical flight and maintenance logs, with
domain experts adjudicating each flagged event to
confirm accuracy and operational relevance.

Expert Panel Walkthroughs — Conduct
structured review sessions where SHAP-based
explanations are presented to cross-functional
panels (engineering, safety, maintenance) to
evaluate  plausibility, interpretability, and
actionability.

Shadow Mode Deployment — Integrate
the model into live data streams in a non-intrusive
manner, generating alerts that do not trigger
operational actions but are logged for comparison
with subsequent maintenance outcomes.

Limited Operational Trial — Enable the
model to inform maintenance decision-making
under a human-in-the-loop protocol, ensuring all
recommended actions receive technician sign-off
and are tracked via SMS hazard logs.
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Monitored  Roll-Out -  Expand
deployment across the fleet with continuous KPI
tracking, including alert utility rate, nuisance rate,
time-to-maintenance, and verification of zero
safety-impact events.

Assurance Artifacts generated during this
process include comprehensive data lineage records,
version-controlled model repositories, SHAP audit
packs documenting interpretability evaluations, and
standardized operational procedures to ensure
traceability, repeatability, and compliance with
safety governance frameworks.

Validation and Assurance Pathway (Conceptual)
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Figure 03. Proposed Validation and
Assurance Pathway for interpretable ML-based
Airbus A320 ACS fault prediction. The five-stage
framework progresses from retrospective offline
review to monitored operational roll-out, with
human oversight and SMS governance
embedded throughout.

Proposed Validation and Assurance
Pathway for interpretable ML-based ACS fault
prediction. The five-stage framework progresses
from retrospective offline review to monitored
operational roll-out, embedding human oversight,
KPIs, and safety management governance
throughout.

The conceptual framework presented in
this study demonstrates how predictive maintenance
for the Airbus A320 Air Conditioning System can

be advanced through an interpretable, socio-
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technical approach. By integrating diverse data
(sensor telemetry, flight logs, and
maintenance records) with feature engineering

sources

techniques that reflect technician reasoning, the
framework ensures that model outputs remain
operationally meaningful. The emphasis on
transparent models such as Random Forests,
combined with SHAP-based explanations,
addresses one of the most pressing barriers to
adoption: stakeholder trust. At the same time, the
staged validation and assurance pathway illustrates
introduced
balancing with
compliance to aviation safety standards. Taken
together, these elements reinforce that the
effectiveness of ML in aviation maintenance
depends not only on algorithmic performance, but
equally on human-centered design, workflow
compatibility, and regulatory alignment. This
synthesis provides the foundation for the subsequent

how predictive models can be

incrementally, innovation

discussion of implications, limitations, and

directions for future research.

IV.  DISCUSSION

1. Interpretability and Trust
In safety-critical domains such as aviation, trust in
model outputs is as important as predictive
accuracy. Ensemble models like Random Forests,
though complex, can be made interpretable through
feature importance measures and post-hoc
techniques such as SHAP. These tools highlight
variables such as compressor temperature
(PACK2_COMPR _T) or cabin pressure that drive
predictions, enabling technicians to validate alerts
against operational knowledge. This transparency
bridges the gap between statistical probabilities and
actionable engineering insights, aligning with
findings from Zhang et al. (2024 [3]) and supported
by broader XAI literature (Amann et al., 2020;
Miller, 2019).
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Figure 04 illustrates how a SHAP summary plot
could present feature influence in practice.

By ranking variables such as discharge temperature

(PACK1 _DISCH_T), precooler pressure
(PRECOOL PRESS2), and forward cabin
temperature (TEMP_FORE_CAB), the

visualization provides technicians with a clear,
human-interpretable explanation of why a potential
fault alert was generated. Importantly, this figure is
conceptual and illustrative only, demonstrating how
explainable ML tools can support interpretability in
ACS fault prediction.

2. Organizational Integration

For predictive maintenance systems to succeed, they
must integrate seamlessly with established
workflows and organizational culture. ML models
should function as decision-support tools rather than
replacements for human expertise. This requires
technician training, intuitive interfaces, and
continuous feedback mechanisms. Without such
alignment, even technically strong models risk
rejection. Evidence from Sharma & Mistry (2023
[6]) and human—AlI interaction studies underscores
the value of early user engagement to foster
ownership and long-term adoption.

3. Regulatory and Safety Assurance

One of the greatest challenges in deploying ML in
aviation lies in reconciling dynamic learning
systems with static certification frameworks.
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Standards such as DO-178C and ICAO’s SMS
mandate deterministic validation and traceability,
while ML models evolve with new data. Hybrid
deployment approaches where ML-generated alerts
are supplemented with deterministic safety checks
offer a potential compromise (Bhola & Malhotra,
2020 [1]; WeShield, 2024 [7]). Ensuring regulatory
approval also requires audit-ready documentation,
including version-controlled models, data lineage
reports, and explainability artifacts, to provide
regulators with a credible assurance trail.

4. Limitations and Risks

Several limitations constrain the current state of
ML-driven predictive maintenance. Chief among
these is the rarity of real-world ACS faults, which
hampers both model training and evaluation
(Jennions et al., 2022 [2]). Oversampling and
simulation can mitigate this in research, but
operational deployment still depends on expert
heuristics and fleet-wide aggregation. Other risks
include model drift, overfitting, and poorly designed
interfaces that may overwhelm or mislead operators.
These limitations reinforce the importance of staged
validation pathways, human oversight, and
continuous monitoring to ensure reliability.

Industry adoption also faces practical barriers.
Integration costs can be high, particularly when
retrofitting ML-enabled dashboards into existing
maintenance infrastructures. Proprietary restrictions
on sensor data and reluctance among airlines to
share operational logs further hinder cross-fleet
model generalization. Additionally, resistance to
change both cultural and organizational may slow
the acceptance of Al-driven tools, despite their
potential benefits.

5. Operational Implications

When carefully integrated, predictive maintenance
models can optimize planning, reduce unnecessary
part replacements, and enhance fleet availability.
Realizing these benefits requires robust feedback
loops: post-maintenance outcomes must be logged,
audited, and reintegrated into retraining cycles.
Embedding ML into Aircraft Health Monitoring

ISSN: 2456-5628 Page 42



International Journal of Modern Research in Engineering and Technology (IJMRET)
www.ijmret.org Volume 10 Issue 10 | October 2025.

Systems (AHMS) should follow a staged approach,
beginning with shadow-mode trials and progressing
to human-in-the-loop operations before broader roll-
out. Such a pathway ensures reliability while
building organizational trust and regulatory
confidence.

Overall, the discussion highlights that technical
accuracy alone is insufficient for aviation adoption.
Instead, interpretable outputs, socio-technical
integration, and regulatory assurance form the triad
of successful deployment. While data scarcity,
integration costs, and evolving regulation remain
barriers, the framework proposed in this study
provides a structured roadmap for addressing these
challenges, setting the stage for future empirical
validation and real-world implementation.

V. CONCLUSION

This study has examined the role of
interpretable machine learning in predictive
maintenance for the Airbus A320 Air Conditioning
System through a qualitative and conceptual
synthesis. By integrating sensor telemetry, flight
operation logs, and maintenance records, the
proposed framework emphasizes how interpretable
models such as Random Forests enhanced with
SHAP-based explanations can provide actionable
insights while maintaining compliance with
regulatory frameworks. The paper contributes a
socio-technical  perspective, highlighting  the
importance of transparency, technician usability,
and organizational readiness, which are often
overlooked in quantitatively focused studies.

Limitations. The study is conceptual in nature and
does not involve empirical validation or numerical
benchmarking. Illustrative figures, including the
SHAP summary plot, are intended to demonstrate
potential interpretability outputs rather than report
operational results. Furthermore, the scarcity of
publicly available ACS fault datasets constrains
opportunities for immediate validation.

Future Research. To extend this work, future
research should pursue empirical testing with large-
scale ACS datasets, explore advanced architectures
such as deep learning for temporal anomaly
detection, and implement real-time integration
within  Aircraft Health Monitoring Systems
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(AHMS). Cross-platform validation across different
aircraft types and operational environments is also
needed to generalize the framework.

In conclusion, interpretable ML-based predictive
maintenance frameworks offer significant potential
to improve safety, reduce operational disruptions,
and achieve cost efficiencies in commercial
aviation. By embedding human, organizational, and
regulatory considerations alongside algorithmic
design, this study provides a foundation for both
academic exploration and industrial adoption.
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