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ABSTRACT: The aviation industry is transitioning from reactive to predictive maintenance as aircraft 

subsystems grow increasingly complex. This paper presents a qualitative review of machine learning (ML) 

approaches for fault prediction in the Airbus A320 Air Conditioning System (ACS), emphasizing interpretability, 

socio-technical integration, and regulatory alignment. Unlike prior research that prioritizes algorithmic 

performance metrics, this study consolidates existing literature and industry practices to propose a structured 

framework for integrating interpretable ML into predictive maintenance workflows.The analysis highlights the 

strengths of Random Forests and Decision Trees in handling multidimensional sensor data while maintaining 

transparency. Supported by SHAP-based explanations, these models can provide actionable insights that build 

technician trust and facilitate regulatory acceptance. Beyond technical performance, the framework addresses 

organizational readiness, workflow compatibility, and compliance with aviation standards, including DO-178C, 

ARP4754A, and ICAO’s Safety Management System (SMS).A conceptual validation pathway is proposed, 

progressing from retrospective analysis to shadow-mode deployment and monitored roll-out, ensuring human-in-

the-loop oversight throughout. The study concludes that interpretable ML, when combined with regulatory 

governance and human-centered design, offers a viable pathway toward safer, cost-efficient, and operationally 

sustainable maintenance in commercial aviation. 

KEYWORDS -Airbus A320, Air Conditioning System (ACS), Predictive Maintenance, Machine Learning, 

Explainable AI, Aviation Safety. 

 

I.     INTRODUCTION 

The aviation industry has always 

prioritized safety, reliability, and cost-efficiency. 

With the increasing complexity and interconnection 

of modern aircraft systems, traditional maintenance 

practices centered on scheduled inspections or 

reactive diagnostics have shown significant 

limitations. Particularly for critical subsystems such 

as the Air Conditioning System (ACS) in the Airbus 

A320, unanticipated failures not only compromise 

passenger comfort and safety but can also cause 

delays, operational disruptions, and increased 

maintenance costs. As global air traffic continues to 

rise, operators face growing pressure to maximize 

fleet availability while minimizing downtime, 

necessitating a shift toward more intelligent, 

adaptive maintenance strategies. 

 

In this evolving landscape, machine 

learning (ML) has gained attention as a tool for 

predictive maintenance. Unlike rule-based or 

threshold-driven diagnostics, ML algorithms can 

learn patterns from complex, high-volume datasets 

such as real-time sensor streams, flight records, and 

historical maintenance logs. By jointly analyzing 

temporal, environmental, and mechanical variables, 
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ML methods can anticipate potential failures before 

they manifest, thereby reducing unscheduled 

interventions and optimizing resource allocation. 

For example, Bhola and Malhotra (2020)[1] showed 

that predictive paradigms can significantly improve 

operational efficiency, while Jennions et al. 

(2022)[2] and Zhang et al. (2024)[3] highlighted the 

potential of ML models to address rare fault 

detection in highly imbalanced datasets. 

 

The Airbus A320, one of the most widely 

used commercial aircraft worldwide, provides a 

compelling test-bed for predictive maintenance 

research. Its ACS integrates multiple sensors that 

record airflow, temperature, compressor activity, 

and valve positions, generating multidimensional 

data during every flight. Manually analyzing these 

signals to detect early indicators of degradation is 

both labor-intensive and error-prone. Supervised 

learning techniques such as Random Forests, 

Decision Trees, and Logistic Regression have 

therefore been investigated for their ability to 

capture subtle correlations among system variables. 

When embedded into Aircraft Health Monitoring 

Systems (AHMS) and linked with digital twin 

frameworks, such models support condition-based 

maintenance by enabling proactive interventions 

without disrupting operations. 

 

Despite these advances, important 

challenges remain. Most prior studies focus 

narrowly on algorithmic accuracy, often neglecting 

socio-technical factors such as technician usability, 

workflow integration, and compliance with 

regulatory standards like DO-178C and Safety 

Management Systems (SMS). As a result, the 

pathway from research prototypes to operational 

deployment remains underexplored. 

 

This paper addresses that gap by presenting 

a qualitative synthesis of existing work and 

developing a conceptual framework for the safe and 

interpretable integration of ML-based fault 

prediction into Airbus A320 ACS maintenance 

workflows. Rather than reporting new model 

training experiments, we consolidate prior findings 

to evaluate feasibility, interpretability, and practical 

barriers to adoption. The framework emphasizes the 

convergence of technical model design, human-

centered usability, and regulatory assurance, 

contributing a holistic perspective often absent from 

predictive maintenance literature. 

 

Contributions 

This paper makes the following 

contributions to the literature on predictive 

maintenance in aviation: 

 

Qualitative Synthesis of ML Approaches — 

consolidates prior studies on machine learning-

based fault prediction with a focus on the Airbus 

A320 Air Conditioning System (ACS), highlighting 

patterns, challenges, and open gaps. 

 

Socio-Technical Integration Framework — 

proposes a conceptual pathway for embedding 

interpretable ML into ACS maintenance workflows, 

emphasizing technician usability, workflow 

compatibility, and stakeholder trust. 

 

Regulatory Alignment Perspective — links 

predictive maintenance practices with safety 

assurance frameworks such as DO-178C and Safety 

Management Systems (SMS), offering insights into 

certification and compliance challenges. 

 

Future Research and Practical Directions — 

identifies limitations in current approaches, such as 

imbalanced datasets and limited real-world 

validation, and provides recommendations to guide 

both academic research and industrial adoption. 

 

II.      LITERATURE REVIEW  

2.1 Technical Advances in ML for 

Predictive Maintenance 

Machine learning has been increasingly 

applied to predictive maintenance in both HVAC 

and aviation domains. Arshad, Tyagi, and Kalia 

(2023) [4] demonstrated that ensemble methods 

such as Random Forests perform robustly on noisy, 

multidimensional datasets, while Bhola and 

Malhotra (2020) [1] showed that supervised models 

can detect anomalies earlier than rule-based systems 

in air conditioning maintenance. Similar trends are 

evident in aviation-specific contexts, where 

supervised models have been applied to sensor-rich 

subsystems like the A320’s Air Conditioning 

System (ACS). These approaches highlight ML’s 



 

 

w w w . i j m r e t . o r g       I S S N :  2 4 5 6 - 5 6 2 8  Page 36 

International Journal of Modern Research in Engineering and Technology (IJMRET)  

www.ijmret.org Volume 10 Issue 10 ǁ October 2025. 

capacity to process high-frequency flight data and 

detect subtle precursors of failure. However, most of 

these contributions prioritize numerical 

performance metrics (e.g., accuracy, F1-scores) over 

issues of explainability or deployment readiness. 

 

 

 

 

2.2 Data Challenges in Aviation Fault Prediction 

One persistent challenge is rare fault 

detection in imbalanced datasets. Jennions, King, 

and Skaf (2022) and Dangut et al. (2023) [2] 

emphasized that most recorded flight data represent 

healthy system states, limiting model generalization 

to rare but critical failures. To address this, hybrid 

methods and data fusion strategies have been 

proposed, integrating sensor readings with historical 

maintenance records. Zhang, Li, and Wang (2024) 

[3] further advocate for collaborative data-sharing 

ecosystems to enhance scalability and improve 

diagnostic accuracy across fleets. These 

contributions underscore the necessity of unified 

data infrastructures but leave open questions around 

data governance and standardization. 

 

2.3 Explainability and Operator Trust 

While predictive performance is important, 

model interpretability has emerged as a decisive 

factor in aviation adoption. Amann et al. (2020) and 

Miller (2019) argue that explainability is central to 

operator trust, particularly in safety-critical settings. 

Recent studies (Wang et al., 2024; Liu et al., 2025; 

Raj & Thomas, 2024) demonstrate the use of SHAP 

(SHapley Additive Explanations) in aerospace and 

HVAC time-series contexts. These works show how 

SHAP can identify influential features such as 

compressor temperature, precooler pressure, and 

cabin zone readings. Yet, García et al. (2023) and 

Kim et al. (2023) caution that there remains a gap 

between mathematically faithful explanations and 

practical interpretability for technicians and 

regulators. 

 

2.4 Regulatory and Governance 

Perspectives 

The integration of predictive maintenance 

tools into aviation must align with regulatory 

frameworks. Bhola and Malhotra (2020) [1] and 

Striim (2024) [5] note that compliance with 

standards such as EASA’s AI Roadmap (2020), 

ICAO’s Safety Management System (SMS), and 

DO-178C requirements presents significant hurdles, 

given ML’s adaptive nature. WeShield (2024) [7] 

suggests hybrid assurance strategies, where 

probabilistic predictions are paired with 

deterministic safety checks to meet certification 

demands. Beyond model validation, studies 

emphasize the importance of governance 

mechanisms such as continuous monitoring, audit 

trails, and alert triage protocols to ensure 

accountability in operational contexts. 

Collectively, these studies establish a 

strong technical foundation for ML-based fault 

prediction in aviation. However, gaps remain in 

three critical areas: (1) limited adoption of 

interpretable methods, (2) insufficient attention to 

human factors and workflow integration, and (3) 

unresolved tensions between adaptive ML systems 

and static regulatory requirements. Addressing these 

gaps provides the rationale for the socio-technical 

integration framework developed in this paper. 

Table 01 : Summary of Reviewed 

Studies on ML for Predictive Maintenance in 

Aviation and Related Domains 
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The summary in Table 01  highlights both 

the breadth and fragmentation of current research on 

ML-based predictive maintenance. Across domains, 

ensemble and hybrid models have consistently 

shown promise in handling complex, 

multidimensional data, while deep learning 

approaches are increasingly applied to rare fault 

detection. However, interpretability methods are 

either absent or treated superficially in most studies, 

with only a limited number explicitly applying 

SHAP or similar XAI techniques. Furthermore, 

while industry reports and conceptual studies 

acknowledge the importance of regulatory 

compliance, few peer-reviewed works 

systematically map predictive models to 

certification frameworks such as DO-178C or ICAO 

SMS. Finally, the majority of studies emphasize 

algorithmic accuracy but neglect socio-technical 

factors, such as technician usability, workflow 

integration, and governance mechanisms. 

 

Taken together, these findings reveal a 

clear research gap: although ML offers strong 

technical capabilities for predictive maintenance, 

the lack of integrated, interpretable, and regulation-

aligned approaches limits real-world adoption. 

Addressing this gap is the central motivation for the 

socio-technical integration framework proposed in 

the following section. 

 

III.         METHODOLOGY  

           Qualitative and Conceptual Framework 

This study adopts a qualitative and conceptual 

methodology, rather than an empirical modeling 

approach. No new data collection, algorithm 

training, or quantitative benchmarking was 

conducted. Instead, the paper synthesizes existing 

literature and established industry practices to 

propose a structured framework for interpretable 

machine learning (ML) in the predictive 

maintenance of the Airbus A320 Air Conditioning 

System (ACS). The methodology is therefore 

oriented toward framework development, 

emphasizing data ecosystem characterization, 

feature relevance, model interpretability, and 

regulatory alignment. 

The objective is not to report experimental 

performance metrics, but to demonstrate how ML 

concepts can be operationally integrated into 

aviation maintenance workflows. Accordingly, the 

framework is illustrated through conceptual figures 

and scenarios, designed to clarify socio-technical 

interactions between data, models, technicians, and 

compliance structures. These elements establish the 

basis for later discussion of interpretability, 

organizational fit, and safety assurance. 

1. Data Ecosystem and Operational 

Context 

This study adopts a qualitative, conceptual 

methodology. No new empirical data collection, 

model training, or performance benchmarking was 

undertaken. Instead, the analysis synthesizes 

existing literature and established industry practices 

to describe the Airbus A320 Air Conditioning 

System (ACS) data ecosystem, relevant 

preprocessing strategies, model selection rationales, 

and the conceptual application of explainability 

techniques. The objective is to propose a structured 

integration framework for interpretable machine 

learning (ML) within predictive maintenance 

workflows. 

The effective application of ML in aviation 

maintenance is contingent upon the quality, 

completeness, and contextual richness of the 

underlying data. The ACS of the Airbus A320 

comprises multiple components such as 

compressors, valves, ducts, and temperature 

regulation units monitored through embedded 

sensors. These sensors capture operational 
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parameters in real time, including airflow rates, 

compressor temperatures, and engine rotational 

speeds. 

 

The primary categories of data 

informing predictive analytics include: 

Sensor Data – High-frequency time-series 

measurements such as PACK_FLOW_R1/R2, 

PACK_COMPR_T1/T2, discharge air 

temperatures, and engine RPM values (N11–N22). 

 

Flight Operation Logs – Contextual 

metadata detailing the operational environment, 

including altitude, flight phase, Mach number, and 

ambient temperature. 

 

Maintenance Records – Historical 

documentation of faults, component replacements, 

and corrective interventions, providing a 

longitudinal perspective on system performance. 

 

The integration of these three data domains 

enables a multi-dimensional representation of 

system health, supporting the identification of both 

transient anomalies and recurrent failure patterns. 

Prior studies (Jennions, King, & Skaf, 2022; Zhang, 

Li, & Wang, 2024) underscore the diagnostic value 

of correlating real-time sensor telemetry with 

maintenance history to enhance fault detection 

fidelity. 

 
Figure 1. Socio-technical data ecosystem 

for interpretable ML-based ACS fault 

prediction, integrating data sources, model 

processing, human expertise, and compliance 

frameworks. 

 

 Socio-technical data ecosystem for interpretable 

ML-based fault prediction in the Airbus A320 Air 

Conditioning System (ACS). The framework 

integrates sensor data, flight operation logs, and 

maintenance records through preprocessing, feature 

engineering, and model processing. Outputs are 

enhanced by human expertise and governed by 

compliance frameworks (DO-178C, ARP4754A, 

SMS) to support operational decision-making. 

   

When combined, these data streams form a 

multidimensional view of aircraft health, enabling 

the detection of both transient anomalies and 

recurring failure patterns. Recent studies (Jennions, 

King, & Skaf, 2022;[2] Zhang, Li, & Wang, 

2024[3]) emphasize the value of cross-referencing 

sensor telemetry with historical maintenance logs to 

yield a richer context for diagnostic reasoning. 

2. Feature Engineering and Relevance to 

Technicians 

Instead of just aiming for the most precise 

algorithms, this study sees the preparation of data as 

a crucial first step in how machine learning interacts 

with complex aviation data. Sometimes, sensor data 

is missing because of issues like dropped signals or 

delays. To handle this, missing values are filled in 

using methods like averaging or KNN, and 

maintenance teams also watch out for missing data 

as a sign of sensor problems. 

Transforming the data, such as scaling it or 

changing its format, helps make the information 

easier for humans to understand. For example, 

instead of using complex numbers, engineers prefer 

inputs like average airflow over 30 seconds, which 

match their everyday understanding of system 

behavior. 

Further, techniques like Principal 

Component Analysis (PCA) reduce the number of 

data features, making analysis easier. More 

importantly, PCA highlights which system parts are 

most important in predicting faults like certain 

temperatures or component pressures. These 

insights can help engineers focus on specific areas 

for inspection or design improvements, creating a 

helpful link between data and actual operations. 

 

Table 1: Key Features for Airbus A320 

ACS Fault Prediction – Description, diagnostic 

relevance, and typical behavior indicators. 
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 Key operational features for ACS fault 

prediction. The table lists selected sensor-derived 

parameters, their operational descriptions, and the 

rationale for their importance in fault detection, as 

informed by prior research and technician expertise. 

 

3 Model Selection and Interpretability 

Considerations 

Through different models like Random 

Forest, Decision Trees, and Logistic Regression. 

Instead of just comparing how accurate they are with 

numbers, we focused on which model best meets 

what stakeholders, like technicians and engineers 

need. 

 

Logistic Regression is simple 

mathematically, but it has trouble handling the 

complex, nonlinear relationships in the air 

conditioning system (ACS). Decision Trees are 

easier to understand because they use 

straightforward if-then rules, which are familiar to 

technicians. But, they can sometimes be too perfect 

on the training data and not work well on new data. 

 

Among these, Random Forest was the best 

choice. It combines many decision trees, making it 

more reliable and less likely to be thrown off by 

noisy data. It works like a human making decisions 

based on multiple clues, which makes its predictions 

easier to trust. Additionally, it can tell us which 

system variables are most important for making 

decisions, helping engineers understand how it 

works. 

 

Instead of presenting numeric evaluation 

metrics, this study interprets model performance 

through stakeholder perspectives: Does the model 

highlight the correct variables? Can it explain fault 

triggers in human-understandable terms? Does it 

reinforce or challenge technicians’ existing 

heuristics? 

 

4. Qualitative Scenarios for 

Implementation and Use 

Instead of showing how these models 

would work in real-time, this part describes 

examples of how machine learning (ML) could help 

improve maintenance tasks.  

 

For instance, after a flight, logs are 

uploaded to an ML dashboard that spots unusual 

patterns in compressor temperatures. If something 

looks off, maintenance staff can check recent repairs 

or look closely at certain parts for hidden issues. 

Another example is that the ML system 

runs overnight checks on many aircraft to find early 

signs of problems like airflow issues. This helps 

schedule inspections for aircraft that might need 

maintenance soon. Importantly, these alerts are not 

seen as final answers but as helpful clues that 

support technicians' decisions, keeping humans in 

control. 

These scenarios focus on how ML fits into 

existing operations. The system is meant to assist, 

not replace human judgment. This way of thinking 

reduces concerns about perfection and encourages 

more trust and use of the technology. 

 

5  Interpretability and System Insight 

 One of the biggest benefits of using 

machine learning is not just making predictions, but 

gaining a better understanding of how the system 

works. For example, compressor temperature, 

especially the reading labeled PACK2_COMPR_T, 

often shows up as an important sign of possible 

problems. This makes sense because if a compressor 

isn't working well, it can cause other airflow issues. 

The connections seen between airflow, compressor 

heat, and engine speed suggest that these parts are 

all linked small changes in one can affect the whole 

system. 

 

For maintenance engineers, this knowledge 

turns ML from just a bunch of numbers into a helpful 

tool for diagnosing problems. Visual tools like 

heatmaps or flowcharts help teams see how different 

system parts are connected, encouraging discussion 
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and revealing patterns that might be hard to notice in 

separate logs (Striim, 2024).[5] 

 

6. Regulatory and Assurance Context: 

Aviation software and data‑driven tools 

must align with established airworthiness and safety 

frameworks. For software contributions, DO‑178C 

(Software Considerations in Airborne Systems) 

defines objectives by Design Assurance Level 

(DAL), supported by DO‑330 for tool qualification 

where applicable.  

 

System‑level development follows 

ARP4754A, with safety assessment guided by 

ARP4761A (functional hazard assessment, 

FMEA/FTA). Cybersecurity risk management 

aligns with DO‑326A/ED‑202A and companion 

documents for airworthiness security. 

 

 For AI/ML, EASA’s AI Roadmap (Levels 

of Assurance) and an operator’s ICAO Safety 

Management System (SMS) suggest 

human‑in‑the‑loop oversight, monitoring, and 

change control. In this paper, we position 

interpretable models (e.g., Random Forest with 

SHAP) and “shadow‑mode” validation to meet 

explainability, traceability, and monitoring needs 

within these frameworks. 

 

 
 

 

Figure 02. Conceptual socio‑technical 

framework linking technical ML components 

(data, models, SHAP), human/organizational 

processes (workflows, training), and 

compliance/safety elements (DO‑178C, 

ARP4754A, SMS), converging in operational 

decision support with feedback loops. 

 

 Conceptual SHAP (SHapley Additive 

Explanations) summary plot ranking the most 

influential ACS parameters in Random Forest 

predictions. Feature importance is presented in 

terms of average SHAP value magnitude, 

illustrating how parameters such as 

PACK1_DISCH_T, PRECOOL_PRESS2, and 

TEMP_FORE_CAB contribute to fault 

classification. 

 

7.Validation and Assurance Pathway 

(Conceptual) 

Given the qualitative and conceptual nature 

of this study, a hypothetical validation pathway is 

proposed to guide the structured and safe 

deployment of interpretable ML models for the 

Airbus A320 Air Conditioning System (ACS) fault 

prediction. The pathway is designed to align with 

regulatory intent under DO-178C, ARP4754A, and 

the operator’s Safety Management System (SMS), 

while ensuring human oversight and operational 

assurance. 

 

The proposed five-stage pathway is as follows: 

Retrospective Offline Review – Apply the 

model to historical flight and maintenance logs, with 

domain experts adjudicating each flagged event to 

confirm accuracy and operational relevance. 

Expert Panel Walkthroughs – Conduct 

structured review sessions where SHAP-based 

explanations are presented to cross-functional 

panels (engineering, safety, maintenance) to 

evaluate plausibility, interpretability, and 

actionability. 

Shadow Mode Deployment – Integrate 

the model into live data streams in a non-intrusive 

manner, generating alerts that do not trigger 

operational actions but are logged for comparison 

with subsequent maintenance outcomes. 

Limited Operational Trial – Enable the 

model to inform maintenance decision-making 

under a human-in-the-loop protocol, ensuring all 

recommended actions receive technician sign-off 

and are tracked via SMS hazard logs. 



 

 

w w w . i j m r e t . o r g       I S S N :  2 4 5 6 - 5 6 2 8  Page 41 

International Journal of Modern Research in Engineering and Technology (IJMRET)  

www.ijmret.org Volume 10 Issue 10 ǁ October 2025. 

Monitored Roll-Out – Expand 

deployment across the fleet with continuous KPI 

tracking, including alert utility rate, nuisance rate, 

time-to-maintenance, and verification of zero 

safety-impact events. 

Assurance Artifacts generated during this 

process include comprehensive data lineage records, 

version-controlled model repositories, SHAP audit 

packs documenting interpretability evaluations, and 

standardized operational procedures to ensure 

traceability, repeatability, and compliance with 

safety governance frameworks. 

 

 
 

Figure 03. Proposed Validation and 

Assurance Pathway for interpretable ML-based 

Airbus A320 ACS fault prediction. The five-stage 

framework progresses from retrospective offline 

review to monitored operational roll-out, with 

human oversight and SMS governance 

embedded throughout. 

 

 Proposed Validation and Assurance 

Pathway for interpretable ML-based ACS fault 

prediction. The five-stage framework progresses 

from retrospective offline review to monitored 

operational roll-out, embedding human oversight, 

KPIs, and safety management governance 

throughout. 

The conceptual framework presented in 

this study demonstrates how predictive maintenance 

for the Airbus A320 Air Conditioning System can 

be advanced through an interpretable, socio-

technical approach. By integrating diverse data 

sources (sensor telemetry, flight logs, and 

maintenance records) with feature engineering 

techniques that reflect technician reasoning, the 

framework ensures that model outputs remain 

operationally meaningful. The emphasis on 

transparent models such as Random Forests, 

combined with SHAP-based explanations, 

addresses one of the most pressing barriers to 

adoption: stakeholder trust. At the same time, the 

staged validation and assurance pathway illustrates 

how predictive models can be introduced 

incrementally, balancing innovation with 

compliance to aviation safety standards. Taken 

together, these elements reinforce that the 

effectiveness of ML in aviation maintenance 

depends not only on algorithmic performance, but 

equally on human-centered design, workflow 

compatibility, and regulatory alignment. This 

synthesis provides the foundation for the subsequent 

discussion of implications, limitations, and 

directions for future research. 

 

IV.        DISCUSSION  

             1. Interpretability and Trust 

In safety-critical domains such as aviation, trust in 

model outputs is as important as predictive 

accuracy. Ensemble models like Random Forests, 

though complex, can be made interpretable through 

feature importance measures and post-hoc 

techniques such as SHAP. These tools highlight 

variables such as compressor temperature 

(PACK2_COMPR_T) or cabin pressure that drive 

predictions, enabling technicians to validate alerts 

against operational knowledge. This transparency 

bridges the gap between statistical probabilities and 

actionable engineering insights, aligning with 

findings from Zhang et al. (2024 [3]) and supported 

by broader XAI literature (Amann et al., 2020; 

Miller, 2019). 
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Figure 04 illustrates how a SHAP summary plot 

could present feature influence in practice.  

By ranking variables such as discharge temperature 

(PACK1_DISCH_T), precooler pressure 

(PRECOOL_PRESS2), and forward cabin 

temperature (TEMP_FORE_CAB), the 

visualization provides technicians with a clear, 

human-interpretable explanation of why a potential 

fault alert was generated. Importantly, this figure is 

conceptual and illustrative only, demonstrating how 

explainable ML tools can support interpretability in 

ACS fault prediction. 

2. Organizational Integration 

For predictive maintenance systems to succeed, they 

must integrate seamlessly with established 

workflows and organizational culture. ML models 

should function as decision-support tools rather than 

replacements for human expertise. This requires 

technician training, intuitive interfaces, and 

continuous feedback mechanisms. Without such 

alignment, even technically strong models risk 

rejection. Evidence from Sharma & Mistry (2023 

[6]) and human–AI interaction studies underscores 

the value of early user engagement to foster 

ownership and long-term adoption. 

3. Regulatory and Safety Assurance 

One of the greatest challenges in deploying ML in 

aviation lies in reconciling dynamic learning 

systems with static certification frameworks. 

Standards such as DO-178C and ICAO’s SMS 

mandate deterministic validation and traceability, 

while ML models evolve with new data. Hybrid 

deployment approaches where ML-generated alerts 

are supplemented with deterministic safety checks 

offer a potential compromise (Bhola & Malhotra, 

2020 [1]; WeShield, 2024 [7]). Ensuring regulatory 

approval also requires audit-ready documentation, 

including version-controlled models, data lineage 

reports, and explainability artifacts, to provide 

regulators with a credible assurance trail. 

4. Limitations and Risks 

Several limitations constrain the current state of 

ML-driven predictive maintenance. Chief among 

these is the rarity of real-world ACS faults, which 

hampers both model training and evaluation 

(Jennions et al., 2022 [2]). Oversampling and 

simulation can mitigate this in research, but 

operational deployment still depends on expert 

heuristics and fleet-wide aggregation. Other risks 

include model drift, overfitting, and poorly designed 

interfaces that may overwhelm or mislead operators. 

These limitations reinforce the importance of staged 

validation pathways, human oversight, and 

continuous monitoring to ensure reliability. 

 

Industry adoption also faces practical barriers. 

Integration costs can be high, particularly when 

retrofitting ML-enabled dashboards into existing 

maintenance infrastructures. Proprietary restrictions 

on sensor data and reluctance among airlines to 

share operational logs further hinder cross-fleet 

model generalization. Additionally, resistance to 

change both cultural and organizational may slow 

the acceptance of AI-driven tools, despite their 

potential benefits. 

5. Operational Implications 

When carefully integrated, predictive maintenance 

models can optimize planning, reduce unnecessary 

part replacements, and enhance fleet availability. 

Realizing these benefits requires robust feedback 

loops: post-maintenance outcomes must be logged, 

audited, and reintegrated into retraining cycles. 

Embedding ML into Aircraft Health Monitoring 
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Systems (AHMS) should follow a staged approach, 

beginning with shadow-mode trials and progressing 

to human-in-the-loop operations before broader roll-

out. Such a pathway ensures reliability while 

building organizational trust and regulatory 

confidence. 

Overall, the discussion highlights that technical 

accuracy alone is insufficient for aviation adoption. 

Instead, interpretable outputs, socio-technical 

integration, and regulatory assurance form the triad 

of successful deployment. While data scarcity, 

integration costs, and evolving regulation remain 

barriers, the framework proposed in this study 

provides a structured roadmap for addressing these 

challenges, setting the stage for future empirical 

validation and real-world implementation. 

V.      CONCLUSION 

           This study has examined the role of 

interpretable machine learning in predictive 

maintenance for the Airbus A320 Air Conditioning 

System through a qualitative and conceptual 

synthesis. By integrating sensor telemetry, flight 

operation logs, and maintenance records, the 

proposed framework emphasizes how interpretable 

models such as Random Forests enhanced with 

SHAP-based explanations can provide actionable 

insights while maintaining compliance with 

regulatory frameworks. The paper contributes a 

socio-technical perspective, highlighting the 

importance of transparency, technician usability, 

and organizational readiness, which are often 

overlooked in quantitatively focused studies. 

Limitations. The study is conceptual in nature and 

does not involve empirical validation or numerical 

benchmarking. Illustrative figures, including the 

SHAP summary plot, are intended to demonstrate 

potential interpretability outputs rather than report 

operational results. Furthermore, the scarcity of 

publicly available ACS fault datasets constrains 

opportunities for immediate validation. 

Future Research. To extend this work, future 

research should pursue empirical testing with large-

scale ACS datasets, explore advanced architectures 

such as deep learning for temporal anomaly 

detection, and implement real-time integration 

within Aircraft Health Monitoring Systems 

(AHMS). Cross-platform validation across different 

aircraft types and operational environments is also 

needed to generalize the framework. 

In conclusion, interpretable ML-based predictive 

maintenance frameworks offer significant potential 

to improve safety, reduce operational disruptions, 

and achieve cost efficiencies in commercial 

aviation. By embedding human, organizational, and 

regulatory considerations alongside algorithmic 

design, this study provides a foundation for both 

academic exploration and industrial adoption. 
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