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Abstract: Electromagnetic navigation systems are essential for precise instrument positioning during 

radiofrequency ablation procedures, yet their accuracy is often compromised by electromagnetic field 

distortions from surgical equipment and environmental interference. This study presents a novel deep 

learning-based spatial registration framework incorporating self-attention mechanisms for adaptive weighting 

of global and local spatial features. We introduce a dynamic weighted loss function that progressively optimizes 

the model from global feature learning to precise local registration. Experimental results demonstrate superior 

performance, with 80% of registration points achieving Euclidean distance errors below 0.8 units and a Local 

Feature Preservation Rate of 96.08%. The framework maintains robust accuracy under varying electromagnetic 

conditions, achieving an overall Root Mean Square Error of 0.6075 and End-to-end Point Mapping Accuracy of 

92.74%. Bland-Altman analysis confirms minimal systematic bias, with 95% of measurements within ±1.96 

standard deviations. This research advances computer-assisted surgical navigation by providing a robust 

solution for precise instrument tracking in challenging electromagnetic environments, thereby improving the 

safety and efficacy of radiofrequency ablation procedures. 

 

Keywords: Attention Mechanism, Deep Learning, Electromagnetic Navigation, Feature Fusion, 

Radiofrequency Ablation, Spatial Registration 

 

I. Introduction 

Recent advances in precision medicine 

have revolutionized minimally invasive therapeutic 

approaches, with radiofrequency ablation (RFA) 

emerging as a pivotal intervention in oncological 

treatment[1]. RFA operates through the generation of 

localized hyperthermia to induce tumor cell death, 

with its therapeutic efficacy and safety profile 

fundamentally dependent on precise ablation zone 

control[2]. Despite significant technological progress, 

the complex anatomical architecture of human tissue 

and the dynamic nature of intraoperative changes 

present substantial challenges. While conventional 

image-guided techniques provide valuable 

preoperative planning data, they are inherently 

limited in their capacity to offer real-time instrument 

tracking and navigation capabilities. This limitation 
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significantly impacts procedural precision and safety 

parameters, making accurate instrument positioning 

and continuous monitoring a critical unmet need in 

clinical practice[3, 4]. Electromagnetic navigation 

systems have garnered considerable attention in 

surgical navigation due to their distinctive 

advantages, including real-time tracking capability, 

radiation-free operation, and immunity to 

line-of-sight restrictions. These systems represent a 

promising solution to address the current limitations 

in precise surgical navigation. 

Electromagnetic navigation systems 

fundamentally rely on electromagnetic tracking 

technology, which establishes spatial correspondence 

between the electromagnetic field coordinate system 

and medical imaging coordinate system through 

strategically positioned electromagnetic sensors on 

the patient's surface[5]. However, the clinical 

implementation of electromagnetic navigation 

systems faces significant technical challenges. The 

primary concern stems from the susceptibility of 

electromagnetic fields to external interference, 

resulting in non-linear distortions in measurement 

data[6]. Conventional registration methodologies 

demonstrate limited efficacy in addressing these 

non-linear deformations, particularly in localized 

regions where registration accuracy frequently fails 

to meet clinical requirements. Furthermore, the 

presence of metallic equipment and electronic 

instruments in the surgical environment exacerbates 

electromagnetic field inhomogeneity, substantially 

increasing the complexity of spatial registration[7, 8]. 

Such precision degradation may lead to critical 

misjudgments in the spatial relationships between 

surgical instruments and vital anatomical structures, 

thereby elevating procedural risks[9]. 

To address these challenges, we propose 

a novel adaptive spatial registration method based on 

deep learning architecture. This approach transcends 

the limitations of conventional rigid registration 

while avoiding the pitfalls of non-rigid registration 

methods that prioritize global alignment at the 

expense of point-specific accuracy. Our method 

achieves precise spatial mapping of individual 

registration points in complex electromagnetic 

environments through an innovative deep learning 

architecture that integrates global and local 

transformation features. We introduce a self-attention 

mechanism that enables adaptive weighting of global 

and local features, significantly enhancing 

registration accuracy and robustness. Additionally, 

we implement a dynamic loss function training 

strategy that facilitates progressive optimization from 

global feature learning to local precise registration, 

effectively balancing registration accuracy across 

different regions. 

The primary contributions of this study 

are threefold: 

1. Development of an innovative electromagnetic 

navigation spatial registration framework 

capable of effectively addressing non-linear 

deformation in electromagnetic field 

environments. 

2. Design of a feature fusion strategy based on 

self-attention mechanisms, enabling adaptive 

modeling of complex spatial transformations. 

3. Introduction of a dynamic weighted loss 

function that optimizes the model training 

process, enhancing overall system performance 

and stability. 

II. Research Status 

Significant advances have been achieved 

in electromagnetic navigation-assisted surgery in 

recent years. Boveiri et al.[10]conducted a 

comprehensive review of deep learning applications 

in multimodal medical image registration, 
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highlighting current research directions and 

challenges. In a prospective cohort study focusing on 

radiofrequency ablation of liver tumors, Ringe et 

al.[11]demonstrated the clinical feasibility of 

electromagnetic navigation guidance. Gao et al. 

[12]performed a systematic comparison between 

optical and electromagnetic tracking systems in 

image-guided interventional procedures. Franz et 

al.[13]proposed a standardized evaluation 

methodology for novel compact field generators, 

providing crucial insights for improving system 

performance in complex environments. 

In the domain of deep learning 

methodologies, Yu et al.[14]pioneered an end-to-end 

learning approach integrating deep learning with 

electromagnetic navigation systems, effectively 

addressing non-linear deformation challenges in 

medical applications. Wang et al.[15]further 

advanced the field by introducing a pyramid attention 

network for medical image registration, achieving 

substantial improvements in registration stability and 

accuracy. These contributions have provided 

innovative solutions for addressing electromagnetic 

field inhomogeneity issues. 

Regarding multimodal fusion strategies, 

Wei et al.[16]developed a progressive learning 

approach based on gradient attention mechanisms, 

enabling dynamic optimization of registration 

accuracy. Haskins et al.[17]provided a 

comprehensive survey of deep learning applications 

in medical image registration, synthesizing key 

challenges in current research. Miao et 

al.[18]implemented real-time 2D/3D registration 

through CNN regression, offering an efficient 

solution for enhancing system real-time performance. 

III. Methods 

We propose an electromagnetic 

navigation system for radiofrequency ablation 

procedures, incorporating neural networks to enhance 

three-dimensional positioning accuracy of surgical 

instruments. The system employs a multi-stage 

framework to address the inherent challenges of 

electromagnetic tracking in surgical environments. 

Initially, electromagnetic sensors are strategically 

positioned on the patient's surface as registration 

fiducials, establishing spatial correspondence 

between the electromagnetic field coordinate system 

and medical imaging coordinate system. The system 

integrates electromagnetic sensors at the surgical 

instrument tip, combining geometric parameters with 

end-effector pose information to achieve real-time 

tracking capability. 

3.1 Spatial Registration Framework 

Spatial registration represents a 

critical process for precise alignment of data between 

different coordinate systems. In radiofrequency 

ablation procedures, traditional methods face 

significant limitations in real-time monitoring of 

spatial relationships between ablation needles and 

critical anatomical structures due to the inherent 

invisibility of surgical instruments within the human 

body. Moreover, these methods struggle to accurately 

assess the relative position between the needle tip 

and target lesions. Let 1{ }n

i iP p == denote the point 

set in the electromagnetic field coordinate system 

and 1{ }n

i iQ q == represent the corresponding point set 

in the medical imaging coordinate system. Our 

objective is to establish the mapping function

:f P Q→ to enable real-time visualization of 

surgical instrument positioning within medical 

images. Considering the complexity of the 

electromagnetic field environment and uncertainty 

factors in the registration process, we propose a deep 



 

 

 
w w w . i j m r e t . o r g       I S S N :  2 4 5 6 - 5 6 2 8  

 

 

 

 

 

Page 16 

International Journal of Modern Research in Engineering and Technology (IJMRET) 

www.ijmret.org Volume 10 Issue 01 ǁ January 2025. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

learning-based registration method to enhance 

system accuracy and robustness. 

3.2 Deep Neural Network Architecture for Spatial 

Registration 

This study formulates the registration 

problem as a spatial mapping from electromagnetic 

field source point sets to medical image target point 

sets. In the ideal scenario, the spatial transformation 

can be expressed as: 

 i iq Rp t= + +ò

 (1) 

where R represents the rotation matrix, 

t denotes the translation vector, and ò indicates 

random noise. However, considering the non-uniform 

electromagnetic field distribution caused by 

environmental interference in surgical settings, the 

actual transformation incorporates nonlinear 

components: 

 ( ) ( ) ( )i i global i local iq f p f p f p= = +

 (2) 

where globalf  represents the global 

affine transformation and localf  denotes the local 

non-rigid transformation. To effectively handle such 

complex spatial transformations, we propose a novel 

deep learning architecture that integrates both global 

and local transformation components.  

As illustrated in Fig.1, our network 

architecture comprises the following key modules: 

1. Feature Extraction Module: We employ 

one-dimensional convolutional neural networks 

(1D CNN) to extract features from both source 

and target point sets. Compared to traditional 

multilayer perceptrons (MLPs), convolutional 

operations demonstrate superior capability in 

capturing local spatial structures and geometric 

features while preserving topological 

relationships within point cloud data.  

2. Feature Enhancement Module: We implement 

max-pooling operations to extract salient 

features, followed by L2 normalization to 

generate feature vectors for both source and 

target point sets. Subsequently, we construct a 

similarity matrix using these normalized features. 

The cosine similarity metric is adopted as the 

loss function, offering robust performance 

against scale variations. 

3. Spatial Information Fusion Module: For each 

point requiring registration, we employ a 

dual-layer 1D CNN architecture, followed by 

global max-pooling and L2 normalization for 

spatial feature extraction. The extracted features 

are then deeply integrated with source point set 

feature vectors through a self-attention 

mechanism. 

4. Coordinate Prediction Module: The fused 

features undergo dimensionality reduction 

through two fully connected layers, ultimately 

generating three-dimensional spatial coordinates 

(x, y, z) to complete the point mapping. 

This hierarchical architecture effectively 

captures the complexity of spatial transformations 

through multi-level feature extraction and fusion. 

The incorporation of the self-attention mechanism 

enables adaptive weighting of local and global 

features, thereby enhancing registration accuracy. 

Moreover, our approach demonstrates robust 

performance in handling both rigid and non-rigid 

transformations, making it particularly suitable for 

surgical navigation applications where 

electromagnetic field distributions may be irregular. 
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Figure 1. Framework Diagram of the Neural Network Algorithm 

3.3 Attention-based Feature Fusion Module 

The feature fusion module serves as a 

critical component in achieving high-precision 

spatial registration, with its primary objective being 

the effective integration of local features from 

individual registration points with global features 

from the source point set. In the context of 

radiofrequency ablation surgical navigation, 

exclusive reliance on local features may result in 

registration outcomes being overly sensitive to local 

electromagnetic field disturbances, while sole 

consideration of global features risks overlooking 

crucial local geometric properties within the surgical 

region. To address these challenges, we propose an 

attention-based feature fusion strategy that adaptively 

balances local and global information, thereby 

enhancing both registration accuracy and robustness. 

As illustrated in Fig.2, our feature fusion 

process encompasses three primary stages: feature 

mapping matrix generation, attention weight 

computation, and feature aggregation. During the 

feature mapping stage, let 
d

ih R  represent the 

feature vector of a single registration point and 

1 2{ , ,..., } n d

nH h h h = R denote the feature 

matrix of the source point set, where represents the 

source point set size and d indicates the feature 

dimension. Considering that each registration point 

must engage in attention computation with all points 

in the source set while accounting for their collective 

influence, we generate Query (Q), Key (K), and 

Value (V) matrices through linear transformations: 

 

1 d

i q

n d

k

n d

v

Q hW

K HW

V HW













= 

=






=

 (3) 

Where , , d

q

d

k vW W W R represent 

learnable weight matrices. This architectural design 

enables the Query matrix to capture registration point 

features, the Key matrix to characterize 

discriminative features from the source point set, and 

the Value matrix to encode comprehensive feature 

information. 

In the attention weight computation 

phase, we calculate the correlation between the 

registration point and each point in the source set 
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through dot-product operations between Query and 

Key matrices. The resulting correlations are 

transformed into probability distributions via the 

Softmax function to obtain attention weights: 

 softmax( ) softmax
TQK

W S
d

 
= =  

 

 (4) 

where d  acts as a scaling factor to 

regulate gradient magnitudes. The application of the 

Softmax function ensures non-negativity and 

normalization of attention weights, enabling the 

network to adaptively allocate importance across 

different spatial positions. 

The final fused features are obtained 

through weighted summation: 

 fusedF W V= 

 (5) 

The fused features fusedF  preserve 

both the local geometric characteristics of the 

registration point and the spatial information from 

the source point set. Our proposed feature fusion 

mechanism demonstrates several technical 

advantages in spatial registration tasks: The attention 

mechanism enables adaptive weight distribution, 

allowing the model to dynamically adjust feature 

fusion weights based on spatial correlations, thereby 

enhancing system adaptability to varying degrees of 

electromagnetic field disturbances. The incorporation 

of global spatial information from the source point 

set within the fused features enhances registration 

generalization performance, enabling the system to 

handle complex spatial transformations encountered 

in surgical navigation. The integration of the 

attention mechanism enables the model to capture 

complex nonlinear spatial relationships, providing 

robust support for handling local deformations in 

surgical environments. 

 

Figure 2. Framework Diagram of the Feature Fusion 

Algorithm 

3.4 Multi-objective Loss Function with Dynamic 

Weighting 

To optimize the spatial registration 

network, we propose a composite loss function that 

integrates contrastive learning loss with point 

position error loss, incorporating a dynamic weight 

adjustment mechanism. The design of the loss 

function aims to achieve progressive optimization 

from global feature learning to precise local 

registration. 

For training samples with batch size N, 

let sH and tH  denote the feature matrices of 

source and target point sets, respectively. The 

contrastive loss is formulated as:  

 
, ,

1

, ,
1

exp( ( , ) / )1
log

exp( ( , ) / )

N
s i t i

contrast N
i

s i t j
j

sim H H
L

N sim H H




=

=

= − 



 (6) 
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where  is a temperature parameter 

controlling the smoothness of feature distribution, 

and 
, ,( , )s i t jsim h h  represents the cosine similarity 

between the i-th source feature and the j-th target 

feature: 

 
, ,

, ,

, ,

( , )

T

s i t j

s i t j

s i t j

sim h h
H

H H

H
=

 (7) 

For individual point predictions, we 

employ Euclidean distance loss to measure the error 

between predicted and ground truth coordinates: 

 
2

2
1

ˆ
1 N

pos i i
i

L q q
N =

=  −

 (8) 

where ( , , )i i i iq x y z=  and

( , , )ˆ ˆ ˆ ˆ
i i i iq x y z=  represent the ground truth and 

predicted coordinates, respectively. In this study, we 

have implemented a Dynamic Weight Adjustment 

Strategy, wherein the total loss function is augmented 

with adaptive weights: 

 1 2( ) ( )total contrast posL t L t L = +

 (9) 

To achieve smooth transition from 

global feature learning to local precise registration, 

we design a training progress-based dynamic weight 

adjustment strategy: 

 1 1,

2 2, 2, 2,

( ) exp( / )

( ) ( )(1 exp( / ))

max

min max min

t t T

t t T

  

    

=  −


= + − − −

 (10) 

wheret denotes the current training step，

T represents the total number of training steps，

1,max is the initial maximum weight for contrastive 

learning loss， 2,min and 2,max  are the minimum 

and maximum weights for position error loss, 

αandβare hyperparameters controlling weight 

transition rates. 

IV. Experimental 

4.1 Data Enhancement and Processing 

The initial experimental setup comprised 

six sensor-based landmarks, yielding six 

corresponding coordinate points. However, this 

limited dataset was insufficient for robust neural 

network training. Therefore, we developed a 

comprehensive data augmentation approach to 

expand the dataset while preserving spatial 

relationships and geometric properties. The data 

enhancement process began with a systematic 

generation of triangular surfaces by implementing a 

combinatorial approach, selecting three points from 

the six landmarks (C(6,3)), resulting in 20 unique 

triangular surfaces. Each surface was defined by its 

three vertex points, establishing the fundamental 

geometric elements for subsequent processing. For 

each triangular surface, we employed a uniform grid 

sampling method to generate intermediary points 

through linear combination of the vertex coordinates 

in the source plane. The transformation between 

source and target planes was accomplished using 

Thin Plate Spline (TPS) interpolation, which 

provides a robust framework for smooth, non-rigid 

mapping. The TPS transformation was implemented 

using Radial Basis Functions (RBF), where the RBF 

kernel computed distance-based relationships 

between input points and control points. Interpolation 

weights were derived from the spatial relationships 

between source points and control points, and a 

smooth interpolation function was constructed using 

the RBF framework to determine the precise 

mapping of grid points from source to target planes. 
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The final dataset was assembled by systematically 

collecting corresponding point pairs from both source 

and target planes, incorporating the original 

landmark positions, generated grid points and their 

mapped coordinates, while ensuring geometric 

consistency through verified point correspondences. 

This augmentation process significantly expanded 

the training dataset while maintaining the intrinsic 

spatial relationships present in the original landmark 

configuration, thereby providing a more robust 

foundation for neural network training. The enhanced 

dataset not only increased the quantity of training 

samples but also preserved the essential geometric 

relationships inherent in the original landmark 

configuration, ensuring that the augmented data 

maintained physical feasibility while providing 

sufficient variation to train a robust neural network 

model. Fig.3 illustrates the spatial relationships 

between the original coordinate points and the 

augmented data points across three selected surfaces. 

In this figure, the original landmark points are 

denoted by red markers, while the blue and green 

markers correspond to the newly generated data 

points through the data augmentation process. 

 

Figure 3. Spatial Relationship Diagram of Original 

and Augmented Point Sets. 

4.2 Implementation Details 

In the data preprocessing phase, we 

performed normalization on the corresponding point 

data to achieve a unified scale distribution, thereby 

accelerating neural network convergence and 

enhancing model performance and generalization 

capabilities. Within the neural network architecture, 

L2 normalization was applied to the feature vectors 

of both source and target point sets prior to similarity 

matrix computation. This operation scaled 

high-dimensional vectors to unit norm, effectively 

mitigating gradient vanishing and explosion issues 

while maintaining feature consistency. 

The neural network implementation was 

based on the PyTorch framework and conducted on 

an NVIDIA RTX 2060 GPU. The model was trained 

with a batch size of 16 using the Adam optimizer 

with an initial learning rate of 1e-3. We employed 

CosineAnnealingLR[19] as the learning rate 

scheduler, allowing for a maximum of 300 training 

epochs during which the learning rate linearly 

decayed from its initial value to 1e-5. In the dynamic 

weight adjustment strategy, we set 1, 0.9max = ,

2, 0.1min = , and 2, 0.9max = , with 

decay/growth rate parameters α = 2 and β = 3, 

respectively, to ensure smooth transition between 

global and local feature learning phases. 

To quantitatively evaluate the proposed 

method's performance, we adopted a comprehensive 

set of complementary evaluation metrics. These 

metrics were carefully selected to assess algorithm 

performance across various aspects of point cloud 

registration and single-point mapping tasks. 

Specifically, we utilized Root Mean Square Error 

(RMSE) to evaluate registration accuracy, Chamfer 

Distance (CD) to measure global similarity between 

point clouds, Local Feature Preservation Rate (LFPR) 

to examine local structure preservation performance, 

and End-to-end Point Mapping Accuracy (EPMA) to 

assess single-point mapping capability. The 

mathematical definitions of these metrics are as 
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follows: 
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1

2
1

1

1 1
min min
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

 − 

N N

 (11) 

In these metrics, 
s

ip and
t

ip represent 

the coordinates of corresponding points in the 

transformed source point cloud and target point cloud, 

respectively, with N denoting the total number of 

point pairs. The set ( )k pN represents the k-nearest 

neighbors of point p, while
pred

ip  and 
gt

ip  denote 

the predicted and ground truth point coordinates, 

respectively. The predefined threshold  is set to 1.0, 

and M represents the total number of test points. To 

ensure evaluation reliability, all metrics were 

computed on a standardized test set encompassing 

scenarios with various types and degrees of non-rigid 

deformations. 

4.3 Experimental Results 

To comprehensively evaluate the 

performance of the proposed method, we conducted a 

multi-dimensional quantitative analysis employing 

Cumulative Error Distribution (CED) curves, error 

distribution histograms, three-dimensional error 

distribution maps, and Bland-Altman analysis, 

combined with multiple evaluation metrics for 

systematic assessment of registration results. 

The CED curve analysis (Fig4(a)) 

reveals distinctive distribution characteristics of 

registration accuracy. The curve exhibits a significant 

ascending trend within the low error threshold range, 

indicating high-precision registration for the majority 

of predicted points. Specifically, approximately 80% 

of registration points achieved Euclidean distance 

errors below 0.8 units, and effective registration was 

accomplished for virtually all points at an error 

threshold of 1.4. This distribution pattern 

substantiates the algorithm's robustness and high 

precision in point cloud registration tasks. The error 

distribution histogram (Fig4(b)) further quantifies the 

statistical characteristics of registration accuracy. 

Results demonstrate that errors predominantly 

concentrate in the low-value interval below 0.4, 

corroborating the high-precision characteristics 

reflected in the CED curve. Notably, the histogram 

reveals sporadic anomalous values in high-error 

intervals, prompting a more detailed spatial 

distribution analysis. The three-dimensional error 

distribution map (Fig4(c)) unveils the spatial 

variation pattern of errors: the core region (blue area) 

exhibits excellent registration accuracy, while 

peripheral regions show slightly increased errors due 

to interference sources, resulting in complex 

nonlinear transformations. This spatial dependency 

provides crucial insights for further algorithm 

optimization.  

 

Figure 4(a). CED Curve Chart 
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Figure 4(b). Error Distribution Histogram 

 

Figure 4(c). Three-Dimensional Error 

Distribution Plot 

To assess systematic bias in registration 

results, we employed Bland-Altman analysis (Fig.5). 

Results demonstrate that 95% of data points fall 

within ±1.96 standard deviations, with mean bias 

approaching zero, confirming strong agreement 

between predicted and true values. Notably, 

relatively apparent error bias was observed along the 

Y-axis, potentially attributable to interference effects 

on the magnetic field in this direction. However, the 

absence of significant trending in errors across 

spatial coordinates indicates stable predictive 

performance across different spatial locations. 

 

Figure 5. BA Diagram of Predicted Points and Target 

Points. 

Furthermore, we quantitatively evaluated 

registration performance using standardized metrics, 

as presented in Table 1: 

Table 1. Registration Performance Metrics 

RMSE CD LFPR EPMA 

0.6075 0.5205 96.08% 92.74% 

 

The RMSE of 0.6075 indicates minimal 

overall deviation between predicted and target point 

clouds. The CD of 0.5205 further validates the high 

geometric similarity between point cloud pairs. 

Particularly noteworthy is the LFPR of 96.08%, 

highlighting the algorithm's exceptional performance 

in preserving local geometric features. Additionally, 

the EPMA of 92.74% (threshold τ=1.0) confirms 

high point-matching precision. These metrics 

collectively constitute a comprehensive evaluation 

framework, validating the effectiveness and 

reliability of the proposed method. 

V.     Conclusion 

This study presents a novel deep 

learning-based spatial registration framework for 

electromagnetic navigation in radiofrequency 

ablation procedures, demonstrating significant 

improvements in registration accuracy and 

robustness under complex surgical environments. 

The proposed architecture effectively addresses the 

challenges of electromagnetic field distortion through 

several key innovations. 

Our attention-based feature fusion 

mechanism successfully integrates global and local 

spatial information, enabling adaptive modeling of 

complex spatial transformations. The quantitative 

evaluation reveals superior performance, with 80% 

of registration points achieving Euclidean distance 
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errors below 0.8 units and an overall Root Mean 

Square Error (RMSE) of 0.6075. The high Local 

Feature Preservation Rate (LFPR) of 96.08% 

particularly demonstrates the method's effectiveness 

in maintaining crucial geometric relationships, while 

the End-to-end Point Mapping Accuracy (EPMA) of 

92.74% confirms reliable point-specific registration 

performance. 

The implementation of a dynamic 

weighted loss function strategy has proven 

instrumental in achieving balanced optimization 

between global feature learning and local precise 

registration. Bland-Altman analysis confirms the 

absence of systematic bias in registration results, 

with 95% of data points falling within ±1.96 standard 

deviations. The spatial error distribution analysis 

reveals consistently high accuracy in core surgical 

regions, with slightly increased errors in peripheral 

areas attributable to environmental interference 

effects. 

These results suggest that our proposed 

method offers a promising solution for enhancing the 

precision and reliability of electromagnetic 

navigation in minimally invasive surgical procedures. 

The framework's ability to maintain high registration 

accuracy under varying electromagnetic field 

conditions addresses a critical challenge in clinical 

applications. Future work should focus on real-time 

performance optimization and integration with 

diverse surgical navigation scenarios, potentially 

extending the methodology to other minimally 

invasive procedures requiring precise instrument 

tracking. 

The successful development and 

validation of this registration framework represents a 

significant step forward in improving the safety and 

efficacy of radiofrequency ablation procedures 

through enhanced electromagnetic navigation 

capabilities. These advancements contribute to the 

broader field of computer-assisted surgical 

navigation and demonstrate the potential of deep 

learning approaches in addressing complex clinical 

challenges. 
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