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Abstract: Electromagnetic navigation systems are essential for precise instrument positioning during
radiofrequency ablation procedures, yet their accuracy is often compromised by electromagnetic field
distortions from surgical equipment and environmental interference. This study presents a novel deep
learning-based spatial registration framework incorporating self-attention mechanisms for adaptive weighting
of global and local spatial features. We introduce a dynamic weighted loss function that progressively optimizes
the model from global feature learning to precise local registration. Experimental results demonstrate superior
performance, with 80% of registration points achieving Euclidean distance errors below 0.8 units and a Local
Feature Preservation Rate of 96.08%. The framework maintains robust accuracy under varying electromagnetic
conditions, achieving an overall Root Mean Square Error of 0.6075 and End-to-end Point Mapping Accuracy of
92.74%. Bland-Altman analysis confirms minimal systematic bias, with 95% of measurements within +1.96
standard deviations. This research advances computer-assisted surgical navigation by providing a robust
solution for precise instrument tracking in challenging electromagnetic environments, thereby improving the
safety and efficacy of radiofrequency ablation procedures.
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fundamentally dependent on precise ablation zone

. Introduction control[2]. Despite significant technological progress,

Recent advances in precision medicine
have revolutionized minimally invasive therapeutic
approaches, with radiofrequency ablation (RFA)
emerging as a pivotal intervention in oncological
treatment[1]. RFA operates through the generation of
localized hyperthermia to induce tumor cell death,

with its therapeutic efficacy and safety profile
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the complex anatomical architecture of human tissue
and the dynamic nature of intraoperative changes
present substantial challenges. While conventional
image-guided  techniques  provide  valuable
preoperative planning data, they are inherently
limited in their capacity to offer real-time instrument

tracking and navigation capabilities. This limitation
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significantly impacts procedural precision and safety
parameters, making accurate instrument positioning
and continuous monitoring a critical unmet need in
clinical practice[3, 4]. Electromagnetic navigation
systems have garnered considerable attention in
surgical navigation due to their distinctive
advantages, including real-time tracking capability,
radiation-free  operation, and immunity to
line-of-sight restrictions. These systems represent a
promising solution to address the current limitations
in precise surgical navigation.

Electromagnetic  navigation  systems
fundamentally rely on electromagnetic tracking
technology, which establishes spatial correspondence
between the electromagnetic field coordinate system
and medical imaging coordinate system through
strategically positioned electromagnetic sensors on
the patient's surface[5]. However, the clinical

implementation of electromagnetic  navigation
systems faces significant technical challenges. The
primary concern stems from the susceptibility of
electromagnetic fields to external interference,
resulting in non-linear distortions in measurement
data[6]. Conventional registration methodologies
demonstrate limited efficacy in addressing these
non-linear deformations, particularly in localized
regions where registration accuracy frequently fails
to meet clinical requirements. Furthermore, the
presence of metallic equipment and electronic
instruments in the surgical environment exacerbates
electromagnetic field inhomogeneity, substantially
increasing the complexity of spatial registration[7, 8].
Such precision degradation may lead to critical
misjudgments in the spatial relationships between
surgical instruments and vital anatomical structures,
thereby elevating procedural risks[9].

To address these challenges, we propose

a novel adaptive spatial registration method based on
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deep learning architecture. This approach transcends

the limitations of conventional rigid registration

while avoiding the pitfalls of non-rigid registration
methods that prioritize global alignment at the
expense of point-specific accuracy. Our method
achieves precise spatial mapping of individual
registration points in complex electromagnetic
environments through an innovative deep learning
architecture that integrates global and local
transformation features. We introduce a self-attention
mechanism that enables adaptive weighting of global
and local features, significantly enhancing
registration accuracy and robustness. Additionally,
we implement a dynamic loss function training
strategy that facilitates progressive optimization from
global feature learning to local precise registration,
effectively balancing registration accuracy across
different regions.

The primary contributions of this study
are threefold:

1. Development of an innovative electromagnetic
navigation spatial registration framework

capable of effectively addressing non-linear

deformation in  electromagnetic  field
environments.

2. Design of a feature fusion strategy based on
self-attention mechanisms, enabling adaptive
modeling of complex spatial transformations.

3. Introduction of a dynamic weighted loss
function that optimizes the model training
process, enhancing overall system performance
and stability.

1. Research Status
Significant advances have been achieved
in electromagnetic navigation-assisted surgery in

recent years. Boveiri et al.[10]conducted a

comprehensive review of deep learning applications

in  multimodal medical

image  registration,
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highlighting  current research  directions and
challenges. In a prospective cohort study focusing on
radiofrequency ablation of liver tumors, Ringe et
al.[11]demonstrated the clinical feasibility of
electromagnetic navigation guidance. Gao et al.
[12]performed a systematic comparison between
optical and electromagnetic tracking systems in
image-guided interventional procedures. Franz et
al.[13]proposed a  standardized evaluation
methodology for novel compact field generators,
providing crucial insights for improving system
performance in complex environments.

In the domain of deep learning
methodologies, Yu et al.[14]pioneered an end-to-end
learning approach integrating deep learning with
electromagnetic navigation systems, effectively
addressing non-linear deformation challenges in
medical applications. Wang et al.[15]further
advanced the field by introducing a pyramid attention
network for medical image registration, achieving
substantial improvements in registration stability and
accuracy. These contributions have provided
innovative solutions for addressing electromagnetic
field inhomogeneity issues.

Regarding multimodal fusion strategies,
Wei et al.[16]developed a progressive learning
approach based on gradient attention mechanisms,
enabling dynamic optimization of registration

accuracy. Haskins et al.[17]provided a
comprehensive survey of deep learning applications
in medical image registration, synthesizing key
research. Miao et

challenges in  current

al.[18]implemented real-time 2D/3D registration

through CNN regression, offering an efficient

solution for enhancing system real-time performance.
1. Methods

We propose an  electromagnetic

navigation system for radiofrequency ablation
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procedures, incorporating neural networks to enhance
three-dimensional positioning accuracy of surgical
instruments. The system employs a multi-stage
framework to address the inherent challenges of
electromagnetic tracking in surgical environments.
Initially, electromagnetic sensors are strategically
positioned on the patient's surface as registration
fiducials, establishing spatial correspondence
between the electromagnetic field coordinate system
and medical imaging coordinate system. The system
integrates electromagnetic sensors at the surgical
instrument tip, combining geometric parameters with
end-effector pose information to achieve real-time

tracking capability.

3.1 Spatial Registration Framework

Spatial registration represents a
critical process for precise alignment of data between
different coordinate systems. In radiofrequency
ablation procedures, traditional methods face
significant limitations in real-time monitoring of
spatial relationships between ablation needles and
critical anatomical structures due to the inherent
invisibility of surgical instruments within the human
body. Moreover, these methods struggle to accurately

assess the relative position between the needle tip
and target lesions. Let P ={p,}, denote the point
set in the electromagnetic field coordinate system
andQ :{qi}i”:1 represent the corresponding point set

in the medical imaging coordinate system. Our

objective is to establish the mapping function
f:P—Q to enable real-time visualization of

surgical instrument positioning within medical

images. Considering the complexity of the
electromagnetic field environment and uncertainty

factors in the registration process, we propose a deep
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learning-based registration method to enhance

system accuracy and robustness.

3.2 Deep Neural Network Architecture for Spatial

Registration

This study formulates the registration
problem as a spatial mapping from electromagnetic
field source point sets to medical image target point
sets. In the ideal scenario, the spatial transformation

can be expressed as:

g, =Rp, +t+0

1)

where R represents the rotation matrix,

t denotes the translation vector, and o indicates
random noise. However, considering the non-uniform
electromagnetic  field distribution caused by
environmental interference in surgical settings, the
transformation nonlinear

actual incorporates

components:
q = f (pi) = fglobal(pi) + flocal ( pi)
(2)

where f represents the global

global

affine transformation and f denotes the local

local

non-rigid transformation. To effectively handle such
complex spatial transformations, we propose a novel
deep learning architecture that integrates both global
and local transformation components.

As illustrated in Fig.1, our network
architecture comprises the following key modules:
1. Feature Extraction Module: We employ
one-dimensional convolutional neural networks
(1D CNN) to extract features from both source
and target point sets. Compared to traditional
multilayer perceptrons (MLPSs), convolutional

operations demonstrate superior capability in
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capturing local spatial structures and geometric

features while preserving topological
relationships within point cloud data.

2. Feature Enhancement Module: We implement
max-pooling operations to extract salient

features, followed by L2 normalization to

generate feature vectors for both source and

target point sets. Subsequently, we construct a

similarity matrix using these normalized features.

The cosine similarity metric is adopted as the

loss function, offering robust performance
against scale variations.

3. Spatial Information Fusion Module: For each
point requiring registration, we employ a
dual-layer 1D CNN architecture, followed by
global max-pooling and L2 normalization for
spatial feature extraction. The extracted features

are then deeply integrated with source point set

feature vectors through a self-attention
mechanism.
4. Coordinate Prediction Module: The fused

features undergo dimensionality reduction
through two fully connected layers, ultimately
generating three-dimensional spatial coordinates
(X, Y, z) to complete the point mapping.

This hierarchical architecture effectively
captures the complexity of spatial transformations
through multi-level feature extraction and fusion.
The incorporation of the self-attention mechanism
enables adaptive weighting of local and global
features, thereby enhancing registration accuracy.
Moreover, our approach demonstrates robust
performance in handling both rigid and non-rigid
transformations, making it particularly suitable for
surgical where

navigation applications

electromagnetic field distributions may be irregular.
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Figure 1. Framework Diagram of the Neural Network Algorithm

3.3 Attention-based Feature Fusion Module

The feature fusion module serves as a

critical component in achieving high-precision
spatial registration, with its primary objective being
the effective integration of local features from
individual registration points with global features
from the source point set. In the context of

radiofrequency  ablation  surgical  navigation,
exclusive reliance on local features may result in
registration outcomes being overly sensitive to local
electromagnetic  field disturbances, while sole
consideration of global features risks overlooking
crucial local geometric properties within the surgical
region. To address these challenges, we propose an
attention-based feature fusion strategy that adaptively
balances local and global information, thereby
enhancing both registration accuracy and robustness.

As illustrated in Fig.2, our feature fusion
process encompasses three primary stages: feature
attention

mapping matrix generation, weight

computation, and feature aggregation. During the
feature mapping stage, let h € R¢ represent the

feature vector of a single registration point and
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H={h,h,,..,n }eR™ denote the feature

matrix of the source point set, where represents the
source point set size and d indicates the feature
dimension. Considering that each registration point
must engage in attention computation with all points
in the source set while accounting for their collective
influence, we generate Query (Q), Key (K), and

Value (V) matrices through linear transformations:

Q=hW, el ™

K =HW, e ™

V =HW, e[l ™
®)

Where W, ,W,,W, € R represent

learnable weight matrices. This architectural design
enables the Query matrix to capture registration point
features, the Key matrix to characterize
discriminative features from the source point set, and
the Value matrix to encode comprehensive feature
information.

In the attention weight computation
phase, we calculate the correlation between the

registration point and each point in the source set
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through dot-product operations between Query and
Key matrices. The resulting correlations are
transformed into probability distributions via the

Softmax function to obtain attention weights:

W = softmax(S) = softmax(QKT j

Jd
(4)
where JE acts as a scaling factor to

regulate gradient magnitudes. The application of the

Softmax function ensures non-negativity and
normalization of attention weights, enabling the
network to adaptively allocate importance across
different spatial positions.

The final fused features are obtained

through weighted summation:

Ffused =W xV
®)
The fused features F, preserve

both the local geometric characteristics of the
registration point and the spatial information from
the source point set. Our proposed feature fusion
mechanism  demonstrates  several  technical
advantages in spatial registration tasks: The attention
mechanism enables adaptive weight distribution,
allowing the model to dynamically adjust feature
fusion weights based on spatial correlations, thereby
enhancing system adaptability to varying degrees of
electromagnetic field disturbances. The incorporation
of global spatial information from the source point
set within the fused features enhances registration
generalization performance, enabling the system to
handle complex spatial transformations encountered
in surgical navigation. The integration of the
attention mechanism enables the model to capture

complex nonlinear spatial relationships, providing
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robust support for handling local deformations in

surgical environments.
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Figure 2. Framework Diagram of the Feature Fusion

Algorithm

3.4 Multi-objective Loss Function with Dynamic
Weighting

To optimize the spatial registration
network, we propose a composite loss function that
integrates contrastive learning loss with point
position error loss, incorporating a dynamic weight
adjustment mechanism. The design of the loss
function aims to achieve progressive optimization
from global feature learning to precise local
registration.

For training samples with batch size N,
let H,and H, denote the feature matrices of

source and target point sets, respectively. The

contrastive loss is formulated as:

1N exp(sim(H,,,H,;)/7
Lcontrast =——Zlog N p( ( . t,) )

N'= 7 Sexp(sim(H, ;, H, )/ 7)
=1 vl

(6)
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where 7 is a temperature parameter

controlling the smoothness of feature distribution,

and sim(h,;,h, ;) represents the cosine similarity

S,i?

between the i-th source feature and the j-th target

feature:
T
Hs,i Ht,j

sim(h,, h )=——3ti
(i) OH,, [H, 0

()

For individual point predictions, we

employ Euclidean distance loss to measure the error
between predicted and ground truth coordinates:

1N —

Lpos :ngch -q 0

(8)

0; =(Xi’yi7zi) and

where

A

G =(X,¥.,2) represent the ground truth and

predicted coordinates, respectively. In this study, we
have implemented a Dynamic Weight Adjustment
Strategy, wherein the total loss function is augmented

with adaptive weights:

L[otal = ﬂ’l (t) Lcontrast + X’Z (t) Lpos

9)

To achieve smooth transition from

global feature learning to local precise registration,
we design a training progress-based dynamic weight

adjustment strategy:

{Al(t) = ﬂ’l,max : exp(_at /T)
ﬂ'2 (t) = A’Z,min + (A'Zmax _ﬂz,min)(l_exp(_ﬂt /T))

(10)
wheret denotes the current training step,

T represents the total number of training steps,

j’l,max is the initial maximum weight for contrastive
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and A

»max '€ the minimum

learning loss, A4, i,

and maximum weights for position error loss,

aandPare  hyperparameters  controlling  weight
transition rates.
V. Experimental
4.1 Data Enhancement and Processing
The initial experimental setup comprised
landmarks,

six  sensor-based yielding  six

corresponding coordinate points. However, this
limited dataset was insufficient for robust neural
network training. Therefore, we developed a
comprehensive data augmentation approach to
expand the dataset while preserving spatial
relationships and geometric properties. The data
enhancement process began with a systematic
generation of triangular surfaces by implementing a
combinatorial approach, selecting three points from
the six landmarks (C(6,3)), resulting in 20 unique
triangular surfaces. Each surface was defined by its
three vertex points, establishing the fundamental
geometric elements for subsequent processing. For
each triangular surface, we employed a uniform grid
sampling method to generate intermediary points
through linear combination of the vertex coordinates
in the source plane. The transformation between
source and target planes was accomplished using
Thin Plate Spline (TPS) interpolation, which
provides a robust framework for smooth, non-rigid
mapping. The TPS transformation was implemented
using Radial Basis Functions (RBF), where the RBF
kernel computed distance-based relationships
between input points and control points. Interpolation
weights were derived from the spatial relationships
between source points and control points, and a
smooth interpolation function was constructed using
the RBF framework to determine the precise

mapping of grid points from source to target planes.
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The final dataset was assembled by systematically
collecting corresponding point pairs from both source
and target planes, incorporating the original
landmark positions, generated grid points and their
mapped coordinates, while ensuring geometric
consistency through verified point correspondences.
This augmentation process significantly expanded
the training dataset while maintaining the intrinsic
spatial relationships present in the original landmark
configuration, thereby providing a more robust
foundation for neural network training. The enhanced
dataset not only increased the quantity of training
samples but also preserved the essential geometric
relationships inherent in the original landmark
configuration, ensuring that the augmented data
maintained physical feasibility while providing
sufficient variation to train a robust neural network
model. Fig.3 illustrates the spatial relationships
between the original coordinate points and the
augmented data points across three selected surfaces.
In this figure, the original landmark points are
denoted by red markers, while the blue and green
markers correspond to the newly generated data

points through the data augmentation process.

Figure 3. Spatial Relationship Diagram of Original

and Augmented Point Sets.

4.2 Implementation Details

In the data preprocessing phase, we
performed normalization on the corresponding point
data to achieve a unified scale distribution, thereby
neural network

accelerating convergence and
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enhancing model performance and generalization
capabilities. Within the neural network architecture,
L2 normalization was applied to the feature vectors
of both source and target point sets prior to similarity
matrix ~ computation. This  operation  scaled
high-dimensional vectors to unit norm, effectively
mitigating gradient vanishing and explosion issues
while maintaining feature consistency.

The neural network implementation was
based on the PyTorch framework and conducted on
an NVIDIA RTX 2060 GPU. The model was trained
with a batch size of 16 using the Adam optimizer
with an initial learning rate of 1e-3. We employed
CosineAnnealingLR[19] as the learning rate
scheduler, allowing for a maximum of 300 training
epochs during which the learning rate linearly

decayed from its initial value to 1e-5. In the dynamic

weight adjustment strategy, we set 4 ... =0.9,

Adpmin =01, and A, . =09 , with

decay/growth rate parameters o = 2 and f = 3,
respectively, to ensure smooth transition between
global and local feature learning phases.

To quantitatively evaluate the proposed
method's performance, we adopted a comprehensive
set of complementary evaluation metrics. These
metrics were carefully selected to assess algorithm
performance across various aspects of point cloud
mapping
Specifically, we utilized Root Mean Square Error

registration and  single-point tasks.
(RMSE) to evaluate registration accuracy, Chamfer
Distance (CD) to measure global similarity between
point clouds, Local Feature Preservation Rate (LFPR)
to examine local structure preservation performance,
and End-to-end Point Mapping Accuracy (EPMA) to
mapping capability. The

mathematical definitions of these metrics are as

assess  single-point
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follows:
13 st
RMSE = |-~ 21 p; - p} [}
N i=1
CD—iZmian—y[g+iZmian—yD2
IR'K&WR |R|kam&

N s t
i=1

M
EPMA = %Zl(u pP"™ — pi < 7)
i=1

(11)
In these metrics, Pp; and p; represent

the coordinates of corresponding points in the
transformed source point cloud and target point cloud,

respectively, with N denoting the total number of

point pairs. The set N, () represents the k-nearest

pred

neighbors of point p, while p”* and p% denote

the predicted and ground truth point coordinates,
respectively. The predefined threshold 7 is set to 1.0,
and M represents the total number of test points. To
ensure evaluation reliability, all metrics were
computed on a standardized test set encompassing
scenarios with various types and degrees of non-rigid

deformations.

4.3 Experimental Results

To comprehensively evaluate the
performance of the proposed method, we conducted a
multi-dimensional quantitative analysis employing
Cumulative Error Distribution (CED) curves, error
distribution three-dimensional

histograms, error

distribution maps, and Bland-Altman analysis,
combined with multiple evaluation metrics for
systematic assessment of registration results.

The CED curve analysis (Fig4(a))
reveals distinctive distribution characteristics of
registration accuracy. The curve exhibits a significant

ascending trend within the low error threshold range,

WWWw.ijmret.org ISSN:
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indicating high-precision registration for the majority
of predicted points. Specifically, approximately 80%
of registration points achieved Euclidean distance
errors below 0.8 units, and effective registration was
accomplished for virtually all points at an error
threshold of 1.4. This distribution pattern
substantiates the algorithm's robustness and high
precision in point cloud registration tasks. The error
distribution histogram (Fig4(b)) further quantifies the
statistical characteristics of registration accuracy.
Results demonstrate that errors predominantly
concentrate in the low-value interval below 0.4,
corroborating the high-precision characteristics
reflected in the CED curve. Notably, the histogram
reveals sporadic anomalous values in high-error
intervals, prompting a more detailed spatial
distribution analysis. The three-dimensional error
distribution map (Fig4(c)) unveils the spatial
variation pattern of errors: the core region (blue area)
exhibits excellent registration accuracy, while
peripheral regions show slightly increased errors due
to interference sources, resulting in complex
nonlinear transformations. This spatial dependency
provides crucial insights for further algorithm
optimization.

Cumulative Error Distribution (CED)

1.0 1 —— CED Curve

o L e
e a 3

Cumulative Percentage

o

' - + . . . . r
0.0 0.2 0.4 0.6 08 10 12 14
Error Threshold

Figure 4(a). CED Curve Chart
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Error Distribution Between Predicted and Target Point Clouds.

il

Errar (Fu

Figure 4(c). Three-Dimensional Error

Distribution Plot

To assess systematic bias in registration
results, we employed Bland-Altman analysis (Fig.5).
Results demonstrate that 95% of data points fall
within £1.96 standard deviations, with mean bias
approaching zero, confirming strong agreement
between predicted and true values. Notably,
relatively apparent error bias was observed along the
Y-axis, potentially attributable to interference effects
on the magnetic field in this direction. However, the

absence of significant trending in errors across

spatial coordinates indicates stable predictive
performance across different spatial locations.
X-Axs Bland-Altran Plat Voo Bland-almnan Pk Z-hnis Blana-4fmnan Pt
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Figure 5. BA Diagram of Predicted Points and Target

Points.
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Furthermore, we quantitatively evaluated
registration performance using standardized metrics,
as presented in Table 1:

Table 1. Registration Performance Metrics

RMSE CD LFPR EPMA

0.6075 0.5205 96.08%  92.74%

ISSN: 2456-5628

The RMSE of 0.6075 indicates minimal
overall deviation between predicted and target point
clouds. The CD of 0.5205 further validates the high
geometric similarity between point cloud pairs.
Particularly noteworthy is the LFPR of 96.08%,
highlighting the algorithm's exceptional performance
in preserving local geometric features. Additionally,
the EPMA of 92.74% (threshold t=1.0) confirms
high point-matching precision. These metrics
collectively constitute a comprehensive evaluation
effectiveness  and

framework, validating the

reliability of the proposed method.

V. Conclusion
This study presents a novel deep
learning-based spatial registration framework for
electromagnetic

navigation in radiofrequency

ablation procedures, demonstrating significant

improvements in  registration accuracy and
robustness under complex surgical environments.
The proposed architecture effectively addresses the
challenges of electromagnetic field distortion through
several key innovations.

Our attention-based feature fusion
mechanism successfully integrates global and local
spatial information, enabling adaptive modeling of
complex spatial transformations. The quantitative
evaluation reveals superior performance, with 80%

of registration points achieving Euclidean distance
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errors below 0.8 units and an overall Root Mean
Square Error (RMSE) of 0.6075. The high Local
Feature Preservation Rate (LFPR) of 96.08%
particularly demonstrates the method's effectiveness
in maintaining crucial geometric relationships, while
the End-to-end Point Mapping Accuracy (EPMA) of
92.74% confirms reliable point-specific registration
performance.

The implementation of a dynamic
weighted loss function strategy has proven
instrumental in achieving balanced optimization
between global feature learning and local precise
registration. Bland-Altman analysis confirms the
absence of systematic bias in registration results,
with 95% of data points falling within +1.96 standard
deviations. The spatial error distribution analysis
reveals consistently high accuracy in core surgical
regions, with slightly increased errors in peripheral
areas attributable to environmental interference
effects.

These results suggest that our proposed
method offers a promising solution for enhancing the
precision and reliability of electromagnetic
navigation in minimally invasive surgical procedures.
The framework's ability to maintain high registration
accuracy under varying electromagnetic field
conditions addresses a critical challenge in clinical
applications. Future work should focus on real-time
performance optimization and integration with
diverse surgical navigation scenarios, potentially
extending the methodology to other minimally
invasive procedures requiring precise instrument
tracking.

The  successful  development and
validation of this registration framework represents a
significant step forward in improving the safety and
efficacy of radiofrequency ablation procedures
through  enhanced

electromagnetic  navigation

WWWw.ijmret.org
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capabilities. These advancements contribute to the

broader field of computer-assisted surgical
navigation and demonstrate the potential of deep
learning approaches in addressing complex clinical
challenges.
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