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ABSTRACT : Coastal zone management has significant social and economic implications, including protection
against extreme waves and floods. Accurately estimating waveovertopping at coastal structures is essential for
safeguarding people and infrastructure. This study utilized multilayer perceptron neural networks (MPNN) and
general regression neural networks (GRNN) to predict wave overtopping discharge at coastal structures with
straight slopes (without a berm). The newly developed EurOtop database was employed for this purpose. The
predictive performance of each model was evaluated using six statistical metrics: MSE, MAE, RMSE, SlI, E;, and
R. Among these models, the GRNN demonstrated the highest accuracy in predicting wave overtopping

discharge.
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. INTRODUCTION

In coastal zones, assessing the risk of
wave overtopping is crucial for determining the
potential collapse of marine structures and flooding
of protected areas. A reliable estimate of the wave
overtopping rate is vital for ensuring the safety and
development of coastal infrastructure. Extreme
overtopping events can lead to rapid water flow
over the crest, posing serious threats to
infrastructure and lives. Such incidents are
particularly dangerous, having led to the loss of
people, vehicles, and even trains being washed into
the sea.

Accurate forecasting of wave overtopping
spread is essential for the design of coastal
structures. Numerous techniques for forecasting the
mean wave overtopping discharge (q) have been
documented, classified into empirical, numerical,
and machine-learning methodologies. In recent
decades, machine learning methodologies have
been extensively utilized for wave overtopping
challenges, providing rapid and economical
resolutions to intricate problems. Wedge et al.
(2005) predicted the g value via MPNN and radial

basis function neural networks (RBFNNS),
concluding that the RBFNN surpassed both the
MPNN and parametric regression techniques,
producing results comparable to those from tailored
numerical simulations.

The ANN model was originally created
for the CLASH project [1] and subsequently
introduced by EurOtop[2]. Van Gent et al.
[3]further refined this model, which EurOtop
endorsed for forecasting the g value. Verhaeghe et
al. [4] improved prediction accuracy by creating a
two-phase neural network model to classify and
quantify the overtopping rate. In contrast to
empirical methodologies, ANN models exhibit a
deficiency in transparency and fail to offer physical
insights [5].

Numerous specific ANN techniques have
been developed for the estimation of the Kr, Kt,
and g parameters [6]. Zanuttigh et al. [7]created an
advanced ANN model for diverse coastal
structures, published by EurOtop (2018), utilizing
an expanded dataset from the CLASH database.
Molines and Medina [8] utilized an artificial neural
network to formulate an explicit wave overtopping
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equation for breakwaters with crown walls,
attaining prediction accuracy similar to that of the
CLASH-ANN. Lee [9] developed new formulas for
calculating wave overtopping discharge at vertical
and inclined seawalls utilizing the enlarged
CLASH datasets and the group method of data
handling (GMDH) algorithm. Lee and Suh[10]
utilized GMDH to formulate wave overtopping
equations for smooth, impermeable vertical
seawalls, demonstrating GMDH's enhanced
efficacy compared to empirical equations,
achieving accuracy comparable to the EurOtop-
ANN model.

Recently, den Bieman et al. [11]
illustrated the efficacy of the XGBoost approach
as a substitute for ANN models. Their results
demonstrated that XGBoost  substantially
diminished prediction errors in comparison to the
ANN created by Van Gent et al. [3]. Hosseinzadeh
et al. [12] investigated the efficacy of SVM and
Gaussian process regression (GPR) models in
forecasting mean wave overtopping rates in
uncomplicated sloped breakwaters, utilizing data
from the EurOtop database. The findings indicated
that both models, particularly GPR, demonstrated
great accuracy.

This study assesses the precision of the
multilayer perceptron neural network (MPNN), and
general regression neural network (GRNN) for
estimating the wave overtopping discharge of
coastal structures. The study also examines the
relative significance of factors that influence the
accuracy of these models.

Il. MATERIALS AND METHODS

A. ANN Methods

Artificial Neural Networks are optimal for
intricate challenges where the interrelations among
variables are poorly delineated. As data-driven
models, they can discern essential inputs without
requiring prior assumptions regarding variable
relationships, so filling a gap in the existing
literature. Artificial Neural Network models
necessitate comparatively few inputs and can
proficiently estimate overtopping discharge. This
study utilized the MPNN and GRNN models.

The multilayer perceptron neural network
(MLPNN) is a prevalent model with three
completely interconnected layers: an input layer,

one or more hidden layers, and an output layer.
This work employed the conjugate gradient
approach to train the MLPNN. Forward
propagation (loss calculation) and backpropagation
(derivative computation) were employed to modify
the parameters, with sigmoid and linear functions
acting as activation functions for the hidden and
output layers, respectively.

General Regression Neural Networks
(GRNNS) are feedforward networks that use a non-
linear regression-based learning mechanism [13].
Introduced by Specht [14], GRNNs generalize both
radial basis function neural networks and
probabilistic neural networks. During GRNN
training, each pattern is memorized, making it a
single-pass network that does not require
backpropagation. The main advantages of GRNNs
are their short training time and high accuracy.
They also require fewer training samples than
traditional backpropagation networks, making them
efficient for practical system modeling and
performance comparison.

GRNNSs require minimal initial parameters
to learn the relationships between variables. A
typical GRNN consists of four layers: input, pattern
(radial basis), summation, and output (Fig. 1).
Notably, the number of neurons in the pattern layer
equals the number of training data points [15]. The
pattern layer's output is passed to the summation
layer, which includes numerator and denominator
neurons. The numerator neurons calculate the
weighted sum of the previous layer's outputs, while
the denominator neurons perform distinct functions
to finalize the output.
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Fig.1. Schematic diagram of a GRNN.

B. Data

This study utilized the newly developed
EurOtop database, which contains 17,942 tests,
approximately 13,500 of which focus solely on
wave overtopping. The original CLASH database
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included about 10,000 schematized tests on wave
overtopping discharge (q), collected globally. The
database features 42 parameters, including 3 output

parameters, 23 structural parameters, and 5 general
parameters. A column labeled "core data™ indicates
whether a test is considered part of the “core” data,

parameters (g, Kr, and Kt), 11 hydraulic making it suitable for training neural networks.
Ge
\\\\\.
Fig. 2. Schematization of the coastal structure with straight slopes.
Table 1. Statistics of parameters for coastal structures with straight slopes.
0, 0,
Parameter Unit Type Number Min Max Mean Std. Dev. Upper 95% Lower 95%
Mean Mean
m [-] structura 4401 6 1000  499.2706 467.8846  513.09775 485.44358
I 6 5
B ] hydrauli 4401 0 80 3.827312 11.73031  4.1739701 3.4805639
G
h [m] structura 4401 0.029 5.01 0.463422 0.412034  0.4775985 0.4512454
I 2
hydrauli 4401 0.017 1.48 0.127277 0.079092  0.1296152 0.1249405
Hm,0,t [m] c 3 4
h [m] structura 4401 0.029 5.01 0.442901 0.416426  0.4552073 0.4305946
t
I 1
structura 4401 0 0.8 0.051906 0.118185  0.0553988 0.0484135
cota [ structura 4401 0 7 2.358368 1.201393  2.393872 2.3228641
I
) [ structura 4401 0.38 1 0.711647 0.276476  0.7198177 0.7034766
s -
I 1 8
D [m] structura 4401 0 0.1 0.025248 0.026333  0.0260262 0.0244698
I 2
structura 4401 0 2.5 0.168938 0.156509  0.1735638 0.1643134
structura 4401 —0.03 2.5 0.162066  0.157837  0.1667308 0.1574019
structura 4401 0 0.94 0.118711 0.149070  0.123117 0.1143062
3 4401  0.00000 0.0256 0.000846 0.002280  0.0009135 0.007787
q [m*/s perm]  output 1 1 7
For this study, which focused on range of dimensional parameters in the database,
estimating wave overtopping discharge in coastal 12 fundamental parameters affecting coastal
structures with straight slopes, only data from structures with straight slopes were selected. Figure
structures with straight slopes were used, 2 shows the schematization of these coastal
representing 24.53% of the EurOtop database. The structures.  To  summarize the  dataset's
data employed were specifically designated for characteristics, statistical measures such as means,
training machine learning models. Given the wide standard deviations, ranges, and 95% confidence
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intervals were calculated. Table 1 and Figure 2
present the statistics of the key parameters.

1. RESULTS AND DISCUTION

Selecting the right input and output
variables is crucial in developing machine learning
models. In this study, 12 of the 31 parameters from
the database were chosen for overtopping
prediction, providing a streamlined overview of the
overtopping discharge test. Prior to inputting
training patterns into the network, a specific
amount of data processing is necessary. Since some
data come from small-scale models and others from
full-scale prototypes, the new CLASH database
recommends avoiding basic parameters as model
inputs. Therefore, the basic data should be
dimensionless to prevent large variations in raw
values. Dimensionless parameters improve the
accuracy and reliability of MPNN and GRNN
models. To represent local breaking and wave run-
up effects, parameters describing structural heights
were made dimensionless with respect to
significant wave height. Similarly, parameters for
structure widths were dimensionless with the
wavelength to account for local reflection, which
may vary in phase with the wave reflection from

other parts of the structure slope[16]. Since the
wave overtopping rate is measured in md/s, a
scaling factor, the product of the length and
velocity scaling factors, is required. As a result, the
non-dimensional wave overtopping rate is

expressed as Sq = # .
gHmO toe

A crucial step in the creation of any ML
technique is the choice of input and output
variables; m, g, h/Lm1,0t, HmO toe/Lm1,0t,
ht/Lm1,0t, Bt/Lm1,0t, Coto, yf, D/HmO toe,
Rc/HmOtoe, Ac/HmMO toe, and Gc/Lm1,0t are the
input variables for the ML models, and the desired
result is the . The statistical features listed in
Table 2 were used to evaluate the ML models in
this study.

Both the training and validation subsets
are derived from the training data. After training,
the models were tested to assess their ability to
generalize to  previously  unseen  cases.
Approximately 70% of the dataset was randomly
selected for training, while the remaining 30% was
used for testing. Each model was implemented
using its own MATLAB code.

Table 2. Description of Statistical Features.

Features Description
MSE N
MSE = NZ(QPL' - Qoi)z
i=1
MAE 1
MAE = NZ'QPL‘ — Qo]
i=1
RMSE N
1
RMSE = |2 (0p; - 00))?
i=1
Sl _ RMSE
Qo
R R = =¥, (epi-0p)(0oi-0o)

\/zﬁil(opi—o_p)zzﬁil(ooi—o_o)z

Er
Ef =

i(ooi - Qo) - i(@pi - Qoi>2| / li(ooi - Q'o)Zl
i=1 i=1 i=1

Qo; : the observed value; Qp ; : the predicted value; N: the number of observations; Qo: the mean value of the

observations; and Qp: the mean value of the predictions.
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Table 3. Model parameters of the MPNN and GRNN models.

Model Parameters

- Training method: conjugate gradient algorithm.

Transfer function: sigmoid for the hidden layer and linear for the output layer.

MPNN i ;
- Architecture of MPNN: 12, 20, and 1
- Validation method: cross-validation, and number of cross-validation folds = 10.
- Training method: conjugate gradient algorithm.
GRNN - Kernel function: Gaussian; sigma (o) = 0.0001:10
- Validation method: Leave-one-out
rather than patterns, while too few neurons prevent
0.03 T T the network from approximating the desired
0.025 ’ outcome. To determine the optimal network size, a
—_— genetic algorithm (GA) was used for the MPNN.
= ot The analysis revealed that a hidden layer network
‘ with 20 neurons produced the best and most stable
01 results in this study. The training parameters for the
0.005 MPNN model are summarized in Table 3.
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Fig. 3. Plot of the measured and predicted values of -
wave-overtopping, a. MPNN, and b. GRNN. oo
0.005

Both the training and validation subsets
are derived from the training data. After training,
the models were tested to assess their ability to
generalize  to  previously unseen  cases.
Approximately 70% of the dataset was randomly
selected for training, while the remaining 30% was
used for testing. Each model was implemented
using its own MATLAB code.

The MPNN model was evaluated using
10-fold cross-validation, with results averaged over
each fold. The GRNN, on the other hand, used a
leave-one-out validation method. Selecting the
optimal number of hidden neurons in a hidden
layer is more challenging than determining the
number of layers. Too many hidden neurons can
lead to overfitting, where the model captures noise

0 0.005 0.01 0.015 0.02 0.025 0.03
Goctua
Fig. 4. Scatter Plot of the measured and predicted
wave-overtopping values for MPNN and GRNN
models.

For the MPNN model's predicted wave
overtopping, the results were as follows: MSE =
0.000004, MAE = 0.00103, RMSE = 0.00209, SI =
2.475, E; = 0.157, R = 0.414, with a maximum
error of 0.02457. Figures 3 and 4 show the
relationship between actual and predicted wave-
overtopping values based on the ML models.

The GRNN model's results were MSE
0.0000001, MAE = 0.00014, RMSE = 0.0003, SI =
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0.353, Ef = 0.983, R = 0.991, and a maximum error
of 0.00255. The predicted values closely match the
actual measurements, indicating high accuracy in
the GRNN model's predictions.

Comparison between MPNN and GRNN
models

The GRNN model outperformed the
MPNN model in predicting wave overtopping
discharge, as evidenced by better MSE, MAE,
RMSE, SI, E; and R values. The GRNN model
significantly reduced overall error and accurately
predicted the wave overtopping discharge, whereas
the MPNN model showed the worst predictive
performance, failing to represent the discharge
accurately.

Compared to the MPNN, the GRNN
produced Sl values that were 600.11% lower and
RMSE values that were 620.69% lower.
Additionally, the GRNN outperformed the MPNN
by 82.6% in terms of E;. Overall, the GRNN model
provided more accurate predictions and
demonstrated superior predictive accuracy, speed,
convenience, and interpretability, making it the
most reliable model for estimating wave
overtopping discharge

IVV. CONCLUSION

In this study, MPNN and GRNN were
used to predict wave overtopping discharge. The
EurOtop database (4401 data points) was utilized to
train and validate the MPNN and GRNN models
for coastal structures with straight slopes. Twelve
non-dimensional parameters were selected as input
vector elements: m, £, h/Lm1,0t, HmO toe/Lm1,0t,
ht/Lm1,0t, Bt/Lm1,0t, Cota, yf, D/HmO toe,
Rc/HmO toe, Ac/HmMO toe, and Ge/Lm1,0t.

The conjugate gradient algorithm was
used to train and adjust the weights of the MPNN
and GRNN models. MPNN model was trained and
tested using cross-validation, while the GRNN
model was trained and tested with a leave-one-out
validation method. This approach ensured that all
dataset instances were used in both training and
testing stages. The predictive performance of each
model was evaluated using statistical features
(MSE, MAE, RMSE, SI,EsandR).

The GRNN model demonstrated superior
accuracy in predicting wave overtopping discharge.
Its SI was 600.11% and 124.08% lower than that of

the MPNN, and its RMSE was 620.69% lower. The
GRNN also outperformed the MPNN in efficiency,
with an E; value 82.6% higher. These results
highlight the GRNN model’s ability to significantly
reduce error and accurately estimate wave
overtopping discharge, offering superior precision
compared to the MPNN model.
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