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ABSTRACT : Coastal zone management has significant social and economic implications, including protection 

against extreme waves and floods. Accurately estimating waveovertopping at coastal structures is essential for 

safeguarding people and infrastructure. This study utilized multilayer perceptron neural networks (MPNN) and 

general regression neural networks (GRNN) to predict wave overtopping discharge at coastal structures with 

straight slopes (without a berm). The newly developed EurOtop database was employed for this purpose. The 

predictive performance of each model was evaluated using six statistical metrics: MSE, MAE, RMSE, SI, Ef, and 

R. Among these models, the GRNN demonstrated the highest accuracy in predicting wave overtopping 

discharge. 

KEYWORDS -Artificial neural networks, prediction, wave overtopping coastal structures, safety. 

 

 

I. INTRODUCTION 

In coastal zones, assessing the risk of 

wave overtopping is crucial for determining the 

potential collapse of marine structures and flooding 

of protected areas. A reliable estimate of the wave 

overtopping rate is vital for ensuring the safety and 

development of coastal infrastructure. Extreme 

overtopping events can lead to rapid water flow 

over the crest, posing serious threats to 

infrastructure and lives. Such incidents are 

particularly dangerous, having led to the loss of 

people, vehicles, and even trains being washed into 

the sea. 

Accurate forecasting of wave overtopping 

spread is essential for the design of coastal 

structures. Numerous techniques for forecasting the 

mean wave overtopping discharge (q) have been 

documented, classified into empirical, numerical, 

and machine-learning methodologies. In recent 

decades, machine learning methodologies have 

been extensively utilized for wave overtopping 

challenges, providing rapid and economical 

resolutions to intricate problems. Wedge et al. 

(2005) predicted the q value via MPNN and radial 

basis function neural networks (RBFNNs), 

concluding that the RBFNN surpassed both the 

MPNN and parametric regression techniques, 

producing results comparable to those from tailored 

numerical simulations. 

The ANN model was originally created 

for the CLASH project [1] and subsequently 

introduced by EurOtop[2]. Van Gent et al. 

[3]further refined this model, which EurOtop 

endorsed for forecasting the q value. Verhaeghe et 

al. [4] improved prediction accuracy by creating a 

two-phase neural network model to classify and 

quantify the overtopping rate. In contrast to 

empirical methodologies, ANN models exhibit a 

deficiency in transparency and fail to offer physical 

insights [5]. 

Numerous specific ANN techniques have 

been developed for the estimation of the Kr, Kt, 

and q parameters [6]. Zanuttigh et al. [7]created an 

advanced ANN model for diverse coastal 

structures, published by EurOtop (2018), utilizing 

an expanded dataset from the CLASH database. 

Molines and Medina [8] utilized an artificial neural 

network to formulate an explicit wave overtopping 
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equation for breakwaters with crown walls, 

attaining prediction accuracy similar to that of the 

CLASH-ANN. Lee [9] developed new formulas for 

calculating wave overtopping discharge at vertical 

and inclined seawalls utilizing the enlarged 

CLASH datasets and the group method of data 

handling (GMDH) algorithm. Lee and Suh[10] 

utilized GMDH to formulate wave overtopping 

equations for smooth, impermeable vertical 

seawalls, demonstrating GMDH's enhanced 

efficacy compared to empirical equations, 

achieving accuracy comparable to the EurOtop-

ANN model. 

Recently, den Bieman et al. [11] 

illustrated the efficacy of the XGBoost approach  

as a substitute for ANN models. Their results 

demonstrated that XGBoost substantially 

diminished prediction errors in comparison to the 

ANN created by Van Gent et al. [3]. Hosseinzadeh 

et al. [12] investigated the efficacy of SVM and 

Gaussian process regression (GPR) models in 

forecasting mean wave overtopping rates in 

uncomplicated sloped breakwaters, utilizing data 

from the EurOtop database. The findings indicated 

that both models, particularly GPR, demonstrated 

great accuracy. 

This study assesses the precision of the 

multilayer perceptron neural network (MPNN), and 

general regression neural network (GRNN) for 

estimating the wave overtopping discharge of 

coastal structures. The study also examines the 

relative significance of factors that influence the 

accuracy of these models. 

 

II. MATERIALS AND METHODS  

 

A. ANN Methods 

Artificial Neural Networks are optimal for 

intricate challenges where the interrelations among 

variables are poorly delineated. As data-driven 

models, they can discern essential inputs without 

requiring prior assumptions regarding variable 

relationships, so filling a gap in the existing 

literature. Artificial Neural Network models 

necessitate comparatively few inputs and can 

proficiently estimate overtopping discharge. This 

study utilized the MPNN and GRNN models. 

The multilayer perceptron neural network 

(MLPNN) is a prevalent model with three 

completely interconnected layers: an input layer, 

one or more hidden layers, and an output layer. 

This work employed the conjugate gradient 

approach to train the MLPNN. Forward 

propagation (loss calculation) and backpropagation 

(derivative computation) were employed to modify 

the parameters, with sigmoid and linear functions 

acting as activation functions for the hidden and 

output layers, respectively. 

General Regression Neural Networks 

(GRNNs) are feedforward networks that use a non-

linear regression-based learning mechanism [13]. 

Introduced by Specht [14], GRNNs generalize both 

radial basis function neural networks and 

probabilistic neural networks. During GRNN 

training, each pattern is memorized, making it a 

single-pass network that does not require 

backpropagation. The main advantages of GRNNs 

are their short training time and high accuracy. 

They also require fewer training samples than 

traditional backpropagation networks, making them 

efficient for practical system modeling and 

performance comparison. 

GRNNs require minimal initial parameters 

to learn the relationships between variables. A 

typical GRNN consists of four layers: input, pattern 

(radial basis), summation, and output (Fig. 1). 

Notably, the number of neurons in the pattern layer 

equals the number of training data points [15]. The 

pattern layer's output is passed to the summation 

layer, which includes numerator and denominator 

neurons. The numerator neurons calculate the 

weighted sum of the previous layer's outputs, while 

the denominator neurons perform distinct functions 

to finalize the output. 

 

Fig.1. Schematic diagram of a GRNN. 

B. Data 

This study utilized the newly developed 

EurOtop database, which contains 17,942 tests, 

approximately 13,500 of which focus solely on 

wave overtopping. The original CLASH database  
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included about 10,000 schematized tests on wave 

overtopping discharge (q), collected globally. The 

database features 42 parameters, including 3 output 

parameters (q, Kr, and Kt), 11 hydraulic 

parameters, 23 structural parameters, and 5 general 

parameters. A column labeled "core data" indicates 

whether a test is considered part of the “core” data, 

making it suitable for training neural networks. 

 
Fig. 2. Schematization of the coastal structure with straight slopes. 

 

Table 1.  Statistics of parameters for coastal structures with straight slopes. 

Parameter Unit Type Number Min Max Mean Std. Dev. 
Upper 95% 

Mean 

Lower 95% 

Mean 

m [-] structura

l 

4401 6 1000 499.2706

6 

467.8846

5 

513.09775 485.44358 

β [°] hydrauli

c 

4401 0 80 3.827312 11.73031 4.1739701 3.4805639 

h [m] 
structura

l 

4401 0.029 5.01 0.463422 0.412034

2 

0.4775985 0.4512454 

Hm,0,t [m] 
hydrauli

c 

4401 0.017 1.48 0.127277

8 

0.079092

4 

0.1296152 0.1249405 

ht [m] 
structura

l 

4401 0.029 5.01 0.442901 0.416426

1 

0.4552073 0.4305946 

Bt [m] 
structura

l 

4401 0 0.8 0.051906

1 

0.118185

9 

0.0553988 0.0484135 

cotα [-] 
structura

l 

4401 0 7 2.358368 1.201393 2.393872 2.3228641 

γf [-] 
structura

l 

4401 0.38 1 0.711647

1 

0.276476

8 

0.7198177 0.7034766 

D [m] 
structura

l 

4401 0 0.1 0.025248 0.026333

2 

0.0260262 0.0244698 

Rc [m] 
structura

l 

4401 0 2.5 0.168938

6 

0.156509

4 

0.1735638 0.1643134 

Ac [m] 
structura

l 

4401 −0.03 2.5 0.162066

3 

0.157837

2 

0.1667308 0.1574019 

Gc [m] 
structura

l 

4401 0 0.94 0.118711

6 

0.149070

5 

0.123117 0.1143062 

q [m3/s per m] output 
4401 0.00000

1 

0.0256 0.000846

1 

0.002280

7 

0.0009135 0.007787 

For this study, which focused on 

estimating wave overtopping discharge in coastal 

structures with straight slopes, only data from 

structures with straight slopes were used, 

representing 24.53% of the EurOtop database. The 

data employed were specifically designated for 

training machine learning models. Given the wide 

range of dimensional parameters in the database, 

12 fundamental parameters affecting coastal 

structures with straight slopes were selected. Figure 

2 shows the schematization of these coastal 

structures. To summarize the dataset's 

characteristics, statistical measures such as means, 

standard deviations, ranges, and 95% confidence 
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intervals were calculated. Table 1 and Figure 2 

present the statistics of the key parameters. 

 

III. RESULTS AND DISCUTION 

Selecting the right input and output 

variables is crucial in developing machine learning 

models. In this study, 12 of the 31 parameters from 

the database were chosen for overtopping 

prediction, providing a streamlined overview of the 

overtopping discharge test. Prior to inputting 

training patterns into the network, a specific 

amount of data processing is necessary. Since some 

data come from small-scale models and others from 

full-scale prototypes, the new CLASH database 

recommends avoiding basic parameters as model 

inputs. Therefore, the basic data should be 

dimensionless to prevent large variations in raw 

values. Dimensionless parameters improve the 

accuracy and reliability of MPNN and GRNN 

models. To represent local breaking and wave run-

up effects, parameters describing structural heights 

were made dimensionless with respect to 

significant wave height. Similarly, parameters for 

structure widths were dimensionless with the 

wavelength to account for local reflection, which 

may vary in phase with the wave reflection from 

other parts of the structure slope[16]. Since the 

wave overtopping rate is measured in m³/s, a 

scaling factor, the product of the length and 

velocity scaling factors, is required. As a result, the 

non-dimensional wave overtopping rate is 

expressed as 𝑆𝑞 =
𝑞

 𝑔𝐻𝑚0 𝑡𝑜𝑒 3
  .  

A crucial step in the creation of any ML 

technique is the choice of input and output 

variables; m, β, h/Lm1,0t, Hm0 toe/Lm1,0t, 

ht/Lm1,0t, Bt/Lm1,0t, Cotα, γf, D/Hm0 toe, 

Rc/Hm0toe, Ac/Hm0 toe, and  Gc/Lm1,0t  are the 

input variables for the ML models, and the desired 

result is the q. The statistical features listed in 

Table 2 were used to evaluate the ML models in 

this study. 

Both the training and validation subsets 

are derived from the training data. After training, 

the models were tested to assess their ability to 

generalize to previously unseen cases. 

Approximately 70% of the dataset was randomly 

selected for training, while the remaining 30% was 

used for testing. Each model was implemented 

using its own MATLAB code. 

 

 

Table 2. Description of Statistical Features. 

Features Description 

MSE 

𝑀𝑆𝐸 =
1

𝑁
  𝑄𝑝𝑖 −𝑄𝑜𝑖 

2

𝑁

𝑖=1

 

MAE 

𝑀𝐴𝐸 =
1

𝑁
  𝑄𝑝𝑖 −𝑄𝑜𝑖 

𝑁

𝑖=1

 

RMSE 

𝑅𝑀𝑆𝐸 =  
1

𝑁
  𝑄𝑝𝑖 − 𝑄𝑜𝑖 

2

𝑁

𝑖=1

 

SI 
𝑆𝐼 =

𝑅𝑀𝑆𝐸

𝑄𝑜
 

R 
𝑅 =

  𝑄𝑝𝑖−𝑄𝑝
−

 𝑁
𝑖=1  𝑄𝑜𝑖−𝑄𝑜

−
 

   𝑄𝑝𝑖−𝑄𝑝
−
 

2
  𝑄𝑜𝑖−𝑄𝑜

−
 

2
𝑁
𝑖=1

𝑁
𝑖=1

  

EF 
𝐸𝑓 =   (𝑄𝑜𝑖 −𝑄𝑜

−

)2  −  (𝑄𝑝𝑖 −𝑄𝑜𝑖)
2

𝑛

𝑖=1

𝑛

𝑖=1

  /   (𝑄𝑜𝑖 − 𝑄𝑜
−

)2

𝑛

𝑖=1

  

𝑄𝑜i : the observed value; 𝑄𝑝 i : the predicted value; N: the number of observations; 𝑄𝑜
−

: the mean value of the 

observations; and 𝑄𝑝
−

: the mean value of the predictions.  
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Table 3.  Model parameters of the MPNN and GRNN models. 

Model Parameters 

MPNN 

- Training method: conjugate gradient algorithm. 

- Transfer function: sigmoid for the hidden layer and linear for the output layer. 

- Architecture of MPNN: 12, 20, and 1  

- Validation method: cross-validation, and number of cross-validation folds = 10. 

GRNN 

- Training method: conjugate gradient algorithm. 

- Kernel function: Gaussian; sigma (σ) = 0.0001:10 

- Validation method: Leave-one-out  

 

 
a.  

 
b.  

Fig. 3. Plot of the measured and predicted values of 

wave-overtopping, a. MPNN, and   b. GRNN. 

Both the training and validation subsets 

are derived from the training data. After training, 

the models were tested to assess their ability to 

generalize to previously unseen cases. 

Approximately 70% of the dataset was randomly 

selected for training, while the remaining 30% was 

used for testing. Each model was implemented 

using its own MATLAB code. 

The MPNN model was evaluated using 

10-fold cross-validation, with results averaged over 

each fold. The GRNN, on the other hand, used a 

leave-one-out validation method. Selecting the 

optimal number of hidden neurons in a hidden 

layer is more challenging than determining the 

number of layers. Too many hidden neurons can 

lead to overfitting, where the model captures noise 

rather than patterns, while too few neurons prevent 

the network from approximating the desired 

outcome. To determine the optimal network size, a 

genetic algorithm (GA) was used for the MPNN. 

The analysis revealed that a hidden layer network 

with 20 neurons produced the best and most stable 

results in this study. The training parameters for the 

MPNN model are summarized in Table 3. 

 
Fig. 4. Scatter Plot of the measured and predicted 

wave-overtopping values for MPNN and GRNN 

models. 

For the MPNN model's predicted wave 

overtopping, the results were as follows: MSE = 

0.000004, MAE = 0.00103, RMSE = 0.00209, SI = 

2.475, Ef = 0.157, R = 0.414, with a maximum 

error of 0.02457. Figures 3 and 4 show the 

relationship between actual and predicted wave-

overtopping values based on the ML models. 

The GRNN model's results were MSE = 

0.0000001, MAE = 0.00014, RMSE = 0.0003, SI = 
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0.353, Ef = 0.983, R = 0.991, and a maximum error 

of 0.00255. The predicted values closely match the 

actual measurements, indicating high accuracy in 

the GRNN model's predictions. 

 

Comparison between MPNN and GRNN 

models 

The GRNN model outperformed the 

MPNN model in predicting wave overtopping 

discharge, as evidenced by better MSE, MAE, 

RMSE, SI, Ef, and R values. The GRNN model 

significantly reduced overall error and accurately 

predicted the wave overtopping discharge, whereas 

the MPNN model showed the worst predictive 

performance, failing to represent the discharge 

accurately. 

Compared to the MPNN, the GRNN 

produced SI values that were 600.11% lower and 

RMSE values that were 620.69% lower. 

Additionally, the GRNN outperformed the MPNN 

by 82.6% in terms of Ef. Overall, the GRNN model 

provided more accurate predictions and 

demonstrated superior predictive accuracy, speed, 

convenience, and interpretability, making it the 

most reliable model for estimating wave 

overtopping discharge 

 

IV. CONCLUSION 

In this study, MPNN and GRNN were 

used to predict wave overtopping discharge. The 

EurOtop database (4401 data points) was utilized to 

train and validate the MPNN and GRNN models 

for coastal structures with straight slopes. Twelve 

non-dimensional parameters were selected as input 

vector elements: m, β, h/Lm1,0t, Hm0 toe/Lm1,0t, 

ht/Lm1,0t, Bt/Lm1,0t, Cotα, γf, D/Hm0 toe, 

Rc/Hm0 toe, Ac/Hm0 toe, and Gc/Lm1,0t.  

The conjugate gradient algorithm was 

used to train and adjust the weights of the MPNN 

and GRNN models. MPNN model was trained and 

tested using cross-validation, while the GRNN 

model was trained and tested with a leave-one-out 

validation method. This approach ensured that all 

dataset instances were used in both training and 

testing stages. The predictive performance of each 

model was evaluated using statistical features 

(MSE, MAE, RMSE, SI,Ef,andR). 

The GRNN model demonstrated superior 

accuracy in predicting wave overtopping discharge. 

Its SI was 600.11% and 124.08% lower than that of 

the MPNN, and its RMSE was 620.69% lower. The 

GRNN also outperformed the MPNN in efficiency, 

with an Ef value 82.6% higher. These results 

highlight the GRNN model’s ability to significantly 

reduce error and accurately estimate wave 

overtopping discharge, offering superior precision 

compared to the MPNN model. 
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